IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v119y2013icp109-116.html
   My bibliography  Save this article

A dynamic particle filter-support vector regression method for reliability prediction

Author

Listed:
  • Wei, Zhao
  • Tao, Tao
  • ZhuoShu, Ding
  • Zio, Enrico

Abstract

Support vector regression (SVR) has been applied to time series prediction and some works have demonstrated the feasibility of its use to forecast system reliability. For accuracy of reliability forecasting, the selection of SVR's parameters is important. The existing research works on SVR's parameters selection divide the example dataset into training and test subsets, and tune the parameters on the training data. However, these fixed parameters can lead to poor prediction capabilities if the data of the test subset differ significantly from those of training. Differently, the novel method proposed in this paper uses particle filtering to estimate the SVR model parameters according to the whole measurement sequence up to the last observation instance. By treating the SVR training model as the observation equation of a particle filter, our method allows updating the SVR model parameters dynamically when a new observation comes. Because of the adaptability of the parameters to dynamic data pattern, the new PF–SVR method has superior prediction performance over that of standard SVR. Four application results show that PF–SVR is more robust than SVR to the decrease of the number of training data and the change of initial SVR parameter values. Also, even if there are trends in the test data different from those in the training data, the method can capture the changes, correct the SVR parameters and obtain good predictions.

Suggested Citation

  • Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
  • Handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:109-116
    DOI: 10.1016/j.ress.2013.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201300152X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
    2. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    3. Yang, Bo & Li, Xiang & Xie, Min & Tan, Feng, 2010. "A generic data-driven software reliability model with model mining technique," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 671-678.
    4. Chen, Kuan-Yu, 2007. "Forecasting systems reliability based on support vector regression with genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 423-432.
    5. Khatibinia, Mohsen & Javad Fadaee, Mohammad & Salajegheh, Javad & Salajegheh, Eysa, 2013. "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 22-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Shunkun & Zhang Jiaquan & Lu Dan, 2016. "Prediction of Cascading Failures in Spatial Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
    2. Lanre Olatomiwa & Saad Mekhilef & Shahaboddin Shamshirband & Dalibor Petkovic, 2015. "Potential of support vector regression for solar radiation prediction in Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1055-1068, June.
    3. Chen, Jian & Yuan, Shenfang & Sbarufatti, Claudio & Jin, Xin, 2021. "Dual crack growth prognosis by using a mixture proposal particle filter and on-line crack monitoring," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Anicic, Obrad & Petković, Dalibor & Cvetkovic, Slavica, 2016. "Evaluation of wind turbine noise by soft computing methodologies: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1122-1128.
    5. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.
    7. Marseguerra, M., 2014. "Early detection of gradual concept drifts by text categorization and Support Vector Machine techniques: The TRIO algorithm," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 1-9.
    8. Wang, Jinyong & Zhang, Ce, 2018. "Software reliability prediction using a deep learning model based on the RNN encoder–decoder," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 73-82.
    9. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    10. Shamshirband, Shahaboddin & Petković, Dalibor & Amini, Amineh & Anuar, Nor Badrul & Nikolić, Vlastimir & Ćojbašić, Žarko & Mat Kiah, Miss Laiha & Gani, Abdullah, 2014. "Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission," Energy, Elsevier, vol. 67(C), pages 623-630.
    11. Jiang, Wuhao & Wang, Kai & Lv, Yan & Guo, Jianfeng & Ni, Zhongjin & Ni, Yihua, 2020. "Time series based behavior pattern quantification analysis and prediction — A study on animal behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    13. Lanre Olatomiwa & Saad Mekhilef & Shahaboddin Shamshirband & Dalibor Petkovic, 2015. "RETRACTED ARTICLE: Potential of support vector regression for solar radiation prediction in Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1055-1068, June.
    14. Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
    15. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    16. Sameer Al-Dahidi & Francesco Di Maio & Piero Baraldi & Enrico Zio, 2017. "A locally adaptive ensemble approach for data-driven prognostics of heterogeneous fleets," Journal of Risk and Reliability, , vol. 231(4), pages 350-363, August.
    17. Vojo Lakovic, 2020. "Modeling of Entrepreneurship Activity Crisis Management by Support Vector Machine," Annals of Data Science, Springer, vol. 7(4), pages 629-638, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Wu, Xuedong & Chang, Yanchao & Mao, Jianxu & Du, Zhaoping, 2013. "Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 244-250.
    3. Fink, Olga & Zio, Enrico & Weidmann, Ulrich, 2014. "Predicting component reliability and level of degradation with complex-valued neural networks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 198-206.
    4. Khatibinia, Mohsen & Javad Fadaee, Mohammad & Salajegheh, Javad & Salajegheh, Eysa, 2013. "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 22-33.
    5. Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.
    6. Lins, Isis Didier & Droguett, Enrique López & Moura, Márcio das Chagas & Zio, Enrico & Jacinto, Carlos Magno, 2015. "Computing confidence and prediction intervals of industrial equipment degradation by bootstrapped support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 120-128.
    7. Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
    8. Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
    9. Oszczypała, Mateusz & Konwerski, Jakub & Ziółkowski, Jarosław & Małachowski, Jerzy, 2024. "Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using continuous time Markov chain and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    11. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    12. Yongquan, Sun & Xi, Chen & He, Ren & Yingchao, Jin & Quanwu, Liu, 2016. "Ordering decision-making methods on spare parts for a new aircraft fleet based on a two-sample prediction," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 40-50.
    13. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    14. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    15. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    16. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    18. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    19. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    20. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Multiple-input multiple-output vs. single-input single-output neural network forecasting”," AQR Working Papers 201502, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:109-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.