An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2015.05.025
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Albaghdadi, Mouayad & Briley, Bruce & Evens, Martha, 2006. "Event storm detection and identification in communication systems," Reliability Engineering and System Safety, Elsevier, vol. 91(5), pages 602-613.
- Traore, M. & Chammas, A. & Duviella, E., 2015. "Supervision and prognosis architecture based on dynamical classification method for the predictive maintenance of dynamical evolving systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 120-131.
- Jing Li & Kuei-Ying Huang & Jionghua Jin & Jianjun Shi, 2008. "A survey on statistical methods for health care fraud detection," Health Care Management Science, Springer, vol. 11(3), pages 275-287, September.
- Zhong, Shengtong & Langseth, Helge & Nielsen, Thomas Dyhre, 2014. "A classification-based approach to monitoring the safety of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 61-71.
- Zhao, Yang & Wang, Shengwei & Xiao, Fu, 2013. "Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)," Applied Energy, Elsevier, vol. 112(C), pages 1041-1048.
- Baraldi, Piero & Razavi-Far, Roozbeh & Zio, Enrico, 2011. "Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 480-488.
- Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
- Rocco S., Claudio M. & Zio, Enrico, 2007. "A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 593-600.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaoqiang Liu & Ji Li & Lei Shao & Hongli Liu & Lei Ren & Lihua Zhu, 2023. "Transformer Fault Early Warning Analysis Based on Hierarchical Clustering Combined with Decision Trees," Energies, MDPI, vol. 16(3), pages 1-14, January.
- Chen, Zhen & Zhou, Di & Zio, Enrico & Xia, Tangbin & Pan, Ershun, 2023. "Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Zhang, Liangwei & Lin, Jing & Shao, Haidong & Zhang, Zhicong & Yan, Xiaohui & Long, Jianyu, 2021. "End-to-end unsupervised fault detection using a flow-based model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Ota, Shuhei & Kimura, Mitsuhiro, 2017. "A statistical dependent failure detection method for n-component parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 376-382.
- Moghaddass, Ramin & Sheng, Shuangwen, 2019. "An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework," Applied Energy, Elsevier, vol. 240(C), pages 561-582.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Fink, Olga & Zio, Enrico & Weidmann, Ulrich, 2014. "Predicting component reliability and level of degradation with complex-valued neural networks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 198-206.
- Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- van Capelleveen, Guido & Poel, Mannes & Mueller, Roland M. & Thornton, Dallas & van Hillegersberg, Jos, 2016. "Outlier detection in healthcare fraud: A case study in the Medicaid dental domain," International Journal of Accounting Information Systems, Elsevier, vol. 21(C), pages 18-31.
- Shrestha, Yash Raj & Krishna, Vaibhav & von Krogh, Georg, 2021. "Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges," Journal of Business Research, Elsevier, vol. 123(C), pages 588-603.
- Ota, Shuhei & Kimura, Mitsuhiro, 2017. "A statistical dependent failure detection method for n-component parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 376-382.
- Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
- Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
- Ajagekar, Akshay & You, Fengqi, 2021. "Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems," Applied Energy, Elsevier, vol. 303(C).
- Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
- Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
- Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
- Philippe Bernard & Najat El Mekkaoui De Freitas & Bertrand B. Maillet, 2022.
"A financial fraud detection indicator for investors: an IDeA,"
Annals of Operations Research, Springer, vol. 313(2), pages 809-832, June.
- Philippe Bernard & Najat El Mekkaoui de Freitas & Bertrand Maillet, 2022. "A Financial Fraud Detection Indicator for Investors: An IDeA," Post-Print hal-02312401, HAL.
- Hui Zhang & Cunhua Pan & Yuanxin Wang & Min Xu & Fu Zhou & Xin Yang & Lou Zhu & Chao Zhao & Yangfan Song & Hongwei Chen, 2022. "Fault Diagnosis of Coal Mill Based on Kernel Extreme Learning Machine with Variational Model Feature Extraction," Energies, MDPI, vol. 15(15), pages 1-14, July.
- Chiwoo Park & Jianhua Z. Huang & Yu Ding, 2010. "A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection," Operations Research, INFORMS, vol. 58(5), pages 1469-1480, October.
- Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
- Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
- Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
- Belkacem, Lobna & Simeu-Abazi, Zineb & Dhouibi, Hedi & Gascard, Eric & Messaoud, Hassani, 2017. "Diagnostic and prognostic of hybrid dynamic systems: Modeling and RUL evaluation for two maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 98-109.
- Yang, Chunzhen & Liu, Jingquan & Zeng, Yuyun & Xie, Guangyao, 2019. "Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model," Renewable Energy, Elsevier, vol. 133(C), pages 433-441.
More about this item
Keywords
Big data analytics; Anomaly detection; High-dimensional data; Fault detection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:142:y:2015:i:c:p:482-497. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.