IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i3p545-555.html
   My bibliography  Save this article

Reliability prediction for evolutionary product in the conceptual design phase using neural network-based fuzzy synthetic assessment

Author

Listed:
  • Yu Liu
  • Hong-Zhong Huang
  • Dan Ling

Abstract

Reliability prediction plays an important role in product lifecycle management. It has been used to assess various reliability indices (such as reliability, availability and mean time to failure) before a new product is physically built and/or put into use. In this article, a novel approach is proposed to facilitate reliability prediction for evolutionary products during their early design stages. Due to the lack of sufficient data in the conceptual design phase, reliability prediction is not a straightforward task. Taking account of the information from existing similar products and knowledge from domain experts, a neural network-based fuzzy synthetic assessment (FSA) approach is proposed to predict the reliability indices that a new evolutionary product could achieve. The proposed approach takes advantage of the capability of the back-propagation neural network in terms of constructing highly non-linear functional relationship and combines both the data sets from existing similar products and subjective knowledge from domain experts. It is able to reach a more accurate prediction than the conventional FSA method reported in the literature. The effectiveness and advantages of the proposed method are demonstrated via a case study of the fuel injection pump and a comparative study.

Suggested Citation

  • Yu Liu & Hong-Zhong Huang & Dan Ling, 2013. "Reliability prediction for evolutionary product in the conceptual design phase using neural network-based fuzzy synthetic assessment," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(3), pages 545-555.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:3:p:545-555
    DOI: 10.1080/00207721.2011.617887
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.617887
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.617887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yuan & Meng, Zhiyi & Xu, Hong & Zou, Yue, 2020. "A dynamic model of evaluating differential automatic method for solving plane problems based on BP neural network algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Jianing Wu & Shaoze Yan, 2014. "An approach to system reliability prediction for mechanical equipment using fuzzy reasoning Petri net," Journal of Risk and Reliability, , vol. 228(1), pages 39-51, February.
    3. Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
    4. Fink, Olga & Zio, Enrico & Weidmann, Ulrich, 2014. "Predicting component reliability and level of degradation with complex-valued neural networks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 198-206.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:3:p:545-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.