IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v131y2014icp29-39.html
   My bibliography  Save this article

Bayesian-network-based safety risk analysis in construction projects

Author

Listed:
  • Zhang, Limao
  • Wu, Xianguo
  • Skibniewski, Miroslaw J.
  • Zhong, Jingbing
  • Lu, Yujie

Abstract

This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion†is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment.

Suggested Citation

  • Zhang, Limao & Wu, Xianguo & Skibniewski, Miroslaw J. & Zhong, Jingbing & Lu, Yujie, 2014. "Bayesian-network-based safety risk analysis in construction projects," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 29-39.
  • Handle: RePEc:eee:reensy:v:131:y:2014:i:c:p:29-39
    DOI: 10.1016/j.ress.2014.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014001288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    3. Fink, Olga & Zio, Enrico & Weidmann, Ulrich, 2014. "Predicting component reliability and level of degradation with complex-valued neural networks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 198-206.
    4. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    5. Lee, Seung Jun & Kim, Man Cheol & Seong, Poong Hyun, 2008. "An analytical approach to quantitative effect estimation of operation advisory system based on human cognitive process using the Bayesian belief network," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 567-577.
    6. Khakzad, Nima & Khan, Faisal & Paltrinieri, Nicola, 2014. "On the application of near accident data to risk analysis of major accidents," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 116-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Haifeng & Liu, Jieyu & Schnieder, Eckehard, 2017. "Validation, verification and evaluation of a Train to Train Distance Measurement System by means of Colored Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 10-23.
    2. Crispim, José & Fernandes, Jorge & Rego, Nazaré, 2020. "Customized risk assessment in military shipbuilding," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Xiaoyan Jiang & Sai Wang & Jie Wang & Sainan Lyu & Martin Skitmore, 2020. "A Decision Method for Construction Safety Risk Management Based on Ontology and Improved CBR: Example of a Subway Project," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    5. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Chen, Fangyu & Wang, Hongwei & Xu, Gangyan & Ji, Hongchang & Ding, Shanlei & Wei, Yongchang, 2020. "Data-driven safety enhancing strategies for risk networks in construction engineering," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    7. Mohammad Yazdi, 2019. "A review paper to examine the validity of Bayesian network to build rational consensus in subjective probabilistic failure analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(1), pages 1-18, February.
    8. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    9. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    10. Wu, Xianguo & Liu, Huitao & Zhang, Limao & Skibniewski, Miroslaw J. & Deng, Qianli & Teng, Jiaying, 2015. "A dynamic Bayesian network based approach to safety decision support in tunnel construction," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 157-168.
    11. Qi Yuan & Hongqinq Zhu & Xiaolei Zhang & Baozhen Zhang & Xingkai Zhang, 2022. "An Integrated Quantitative Risk Assessment Method for Underground Engineering Fires," IJERPH, MDPI, vol. 19(24), pages 1-26, December.
    12. Dongye Sun & Yuanhua Jia & Lingqiao Qin & Yang Yang & Juyong Zhang, 2018. "A Variance Maximization Based Weight Optimization Method for Railway Transportation Safety Performance Measurement," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    13. Ünsal-Altuncan, Izel & Vanhoucke, Mario, 2024. "A hybrid forecasting model to predict the duration and cost performance of projects with Bayesian Networks," European Journal of Operational Research, Elsevier, vol. 315(2), pages 511-527.
    14. Nihar Ranjan Nayak & Sumit Kumar & Deepak Gupta & Ashish Suri & Mohd Naved & Mukesh Soni, 2022. "Network mining techniques to analyze the risk of the occupational accident via bayesian network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 633-641, March.
    15. Albert P. C. Chan & Francis K. W. Wong & Carol K. H. Hon & Tracy N. Y. Choi, 2018. "A Bayesian Network Model for Reducing Accident Rates of Electrical and Mechanical (E&M) Work," IJERPH, MDPI, vol. 15(11), pages 1-19, November.
    16. Lin, Song-Shun & Shen, Shui-Long & Zhou, Annan & Xu, Ye-Shuang, 2021. "Novel model for risk identification during karst excavation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    17. Zhou, Ying & Li, Chenshuang & Zhou, Cheng & Luo, Hanbin, 2018. "Using Bayesian network for safety risk analysis of diaphragm wall deflection based on field data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 152-167.
    18. Zhan-Sheng Liu & Xin-Tong Meng & Ze-Zhong Xing & Cun-Fa Cao & Yue-Yue Jiao & An-Xiu Li, 2022. "Digital Twin-Based Intelligent Safety Risks Prediction of Prefabricated Construction Hoisting," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    19. Liu, Wenli & Li, Ang & Fang, Weili & Love, Peter E.D. & Hartmann, Timo & Luo, Hanbin, 2023. "A hybrid data-driven model for geotechnical reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    20. Ali Namazian & Siamak Haji Yakhchali & Vahidreza Yousefi & Jolanta Tamošaitienė, 2019. "Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk," IJERPH, MDPI, vol. 16(24), pages 1-19, December.
    21. Hieu T. T. L. Pham & Mahdi Rafieizonooz & SangUk Han & Dong-Eun Lee, 2021. "Current Status and Future Directions of Deep Learning Applications for Safety Management in Construction," Sustainability, MDPI, vol. 13(24), pages 1-37, December.
    22. Shen, Shui-Long & Lin, Song-Shun & Zhou, Annan, 2023. "A cloud model-based approach for risk analysis of excavation system," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    23. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    24. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    25. Wang, Fan & Li, Heng & Dong, Chao & Ding, Lieyun, 2019. "Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C. & Ariffin, A.K. & Singh, S.S., 2021. "Evidence based risk analysis of fire and explosion accident scenarios in FPSOs," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Zhou, Ying & Li, Chenshuang & Ding, Lieyun & Sekula, Przemyslaw & Love, Peter E.D. & Zhou, Cheng, 2019. "Combining association rules mining with complex networks to monitor coupled risks," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 194-208.
    4. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    5. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2019. "An integrated approach for real-time hazard mitigation in complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 297-309.
    7. Limao Zhang & Xianguo Wu & Yawei Qin & Miroslaw J. Skibniewski & Wenli Liu, 2016. "Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel‐Induced Pipeline Damage," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 278-301, February.
    8. Noroozi, Alireza & Khakzad, Nima & Khan, Faisal & MacKinnon, Scott & Abbassi, Rouzbeh, 2013. "The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 251-258.
    9. Nima Khakzad & Sina Khakzad & Faisal Khan, 2014. "Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1759-1771, December.
    10. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    11. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    12. Aalirezaei, Armin & Kabir, Dr. Golam & Khan, Md Saiful Arif, 2023. "Dynamic predictive analysis of the consequences of gas pipeline failures using a Bayesian network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    13. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.
    14. Chemweno, Peter & Pintelon, Liliane & Van Horenbeek, Adriaan & Muchiri, Peter, 2015. "Development of a risk assessment selection methodology for asset maintenance decision making: An analytic network process (ANP) approach," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 663-676.
    15. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    16. Wu Jun & Yang Hui & Cheng Yuan, 2015. "Domino Effect Analysis, Assessment and Prevention in Process Industries," Journal of Systems Science and Information, De Gruyter, vol. 3(6), pages 481-498, December.
    17. Baoping Cai & Yonghong Liu & Zengkai Liu & Xiaojie Tian & Yanzhen Zhang & Renjie Ji, 2013. "Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1293-1311, July.
    18. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    19. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    20. Hongyang Yu & Faisal Khan & Brian Veitch, 2017. "A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1668-1682, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:131:y:2014:i:c:p:29-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.