IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v117y2024icp45-66.html
   My bibliography  Save this article

A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data

Author

Listed:
  • Li, Zhengxiao
  • Wang, Fei
  • Zhao, Zhengtang

Abstract

The four-parameter generalized beta distribution of the second kind (GBII) has been proposed for modeling insurance losses with heavy-tailed features. The aim of this paper is to present a parametric composite GBII regression modeling by splicing two GBII distributions using mode matching method. It is designed for simultaneous modeling of small and large claims and capturing the policyholder heterogeneity by introducing the covariates into the scale parameter. The threshold that splits two GBII distributions is allowed to vary across individuals policyholders based on their risk features. The proposed regression modeling also contains a wide range of insurance loss distributions as the head and the tail respectively and provides the close-formed expressions for parameter estimation and model prediction. A simulation study is conducted to show the accuracy of the proposed estimation method and the flexibility of the regressions. Some illustrations of the applicability of the new class of distributions and regressions are provided with a Danish fire losses data set and a Chinese medical insurance claims data set, comparing with the results of competing models from the literature.

Suggested Citation

  • Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
  • Handle: RePEc:eee:insuma:v:117:y:2024:i:c:p:45-66
    DOI: 10.1016/j.insmatheco.2024.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    2. Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2022. "Fitting Censored and Truncated Regression Data Using the Mixture of Experts Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(4), pages 496-520, November.
    3. David Scollnik, 2007. "On composite lognormal-Pareto models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2007(1), pages 20-33.
    4. Tzougas, George & Karlis, Dimitris, 2020. "An Em Algorithm For Fitting A New Class Of Mixed Exponential Regression Models With Varying Dispersion," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 555-583, May.
    5. Fabio Baione & Davide Biancalana, 2019. "An Individual Risk Model for Premium Calculation Based on Quantile: A Comparison between Generalized Linear Models and Quantile Regression," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(4), pages 573-590, October.
    6. Tsz Chai Fung & George Tzougas & Mario V. Wüthrich, 2023. "Mixture Composite Regression Models with Multi-type Feature Selection," North American Actuarial Journal, Taylor & Francis Journals, vol. 27(2), pages 396-428, April.
    7. Adelchi Azzalini & Thomas Del Cappello & Samuel Kotz, 2002. "Log-Skew-Normal and Log-Skew-t Distributions as Models for Family Income Data," Journal of Income Distribution, Ad libros publications inc., vol. 11(3-4), pages 2-2, September.
    8. Fissler, Tobias & Merz, Michael & Wüthrich, Mario V., 2023. "Deep quantile and deep composite triplet regression," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 94-112.
    9. Frees, Edward W. & Meyers, Glenn & Cummings, A. David, 2011. "Summarizing Insurance Scores Using a Gini Index," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1085-1098.
    10. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Tail conditional moments for elliptical and log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 179-188.
    11. Bettina Grün & Tatjana Miljkovic, 2019. "Extending composite loss models using a general framework of advanced computational tools," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(8), pages 642-660, September.
    12. Dong, A.X.D. & Chan, J.S.K., 2013. "Bayesian analysis of loss reserving using dynamic models with generalized beta distribution," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 355-365.
    13. Enrique Calderín-Ojeda & Chun Fung Kwok, 2016. "Modeling claims data with composite Stoppa models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(9), pages 817-836, October.
    14. Guojun Gan & Emiliano A. Valdez, 2018. "Fat-Tailed Regression Modeling with Spliced Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(4), pages 554-573, October.
    15. Beirlant, Jan & Goegebeur, Yuri & Verlaak, Robert & Vynckier, Petra, 1998. "Burr regression and portfolio segmentation," Insurance: Mathematics and Economics, Elsevier, vol. 23(3), pages 231-250, December.
    16. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    17. Li, Zhengxiao & Beirlant, Jan & Meng, Shengwang, 2021. "Generalizing The Log-Moyal Distribution And Regression Models For Heavy-Tailed Loss Data," ASTIN Bulletin, Cambridge University Press, vol. 51(1), pages 57-99, January.
    18. Bladt, Martin, 2022. "Phase-Type Distributions For Claim Severity Regression Modeling," ASTIN Bulletin, Cambridge University Press, vol. 52(2), pages 417-448, May.
    19. Peng Shi & Lu Yang, 2018. "Pair Copula Constructions for Insurance Experience Rating," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 122-133, January.
    20. del Castillo, Joan & Daoudi, Jalila & Serra, Isabel, 2017. "The Full Tails Gamma Distribution Applied To Model Extreme Values," ASTIN Bulletin, Cambridge University Press, vol. 47(3), pages 895-917, September.
    21. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.
    22. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    23. Edward W. (Jed) Frees & Glenn Meyers & A. David Cummings, 2014. "Insurance Ratemaking and a Gini Index," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(2), pages 335-366, June.
    24. Yi Yang & Wei Qian & Hui Zou, 2018. "Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 456-470, July.
    25. S. Nadarajah & S.A.A. Bakar, 2014. "New composite models for the Danish fire insurance data," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2014(2), pages 180-187.
    26. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    27. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    28. Chan, J.S.K. & Choy, S.T.B. & Makov, U.E. & Landsman, Z., 2018. "Modelling Insurance Losses Using Contaminated Generalised Beta Type-Ii Distribution," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 871-904, May.
    29. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," LIDAM Reprints ISBA 2014006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    30. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    31. Verbelen, Roel & Gong, Lan & Antonio, Katrien & Badescu, Andrei & Lin, Sheldon, 2015. "Fitting Mixtures Of Erlangs To Censored And Truncated Data Using The Em Algorithm," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 729-758, September.
    32. Chai Fung, Tsz & Badescu, Andrei L. & Sheldon Lin, X., 2019. "A Class Of Mixture Of Experts Models For General Insurance: Application To Correlated Claim Frequencies," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 647-688, September.
    33. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
    2. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    3. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    4. Walena Anesu Marambakuyana & Sandile Charles Shongwe, 2024. "Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
    5. Johan René van Dorp & Ekundayo Shittu, 2024. "Two-sided distributions with applications in insurance loss modeling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 827-861, July.
    6. Deepesh Bhati & Buddepu Pavan & Girish Aradhye, 2024. "On a New Mixed Pareto–Weibull Distribution: Its Parametric Regression Model with an Insurance Applications," Annals of Data Science, Springer, vol. 11(6), pages 2077-2107, December.
    7. Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
    8. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    9. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    10. Tzougas, George & Jeong, Himchan, 2021. "An expectation-maximization algorithm for the exponential-generalized inverse Gaussian regression model with varying dispersion and shape for modelling the aggregate claim amount," LSE Research Online Documents on Economics 108210, London School of Economics and Political Science, LSE Library.
    11. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2023. "Empirical risk assessment of maintenance costs under full-service contracts," European Journal of Operational Research, Elsevier, vol. 304(2), pages 476-493.
    12. Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
    13. Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
    14. Girish Aradhye & George Tzougas & Deepesh Bhati, 2024. "A Copula-Based Bivariate Composite Model for Modelling Claim Costs," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    15. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    16. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    17. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    18. Liang Yang & Zhengxiao Li & Shengwang Meng, 2020. "Risk Loadings in Classification Ratemaking," Papers 2002.01798, arXiv.org, revised Jan 2022.
    19. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    20. George Tzougas & Himchan Jeong, 2021. "An Expectation-Maximization Algorithm for the Exponential-Generalized Inverse Gaussian Regression Model with Varying Dispersion and Shape for Modelling the Aggregate Claim Amount," Risks, MDPI, vol. 9(1), pages 1-17, January.

    More about this item

    Keywords

    Composite GBII distribution; Regression modeling; Policyholder heterogeneity; Varying threshold; Danish fire loss data; Medical insurance claim data;
    All these keywords.

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:117:y:2024:i:c:p:45-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.