IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v117y2024icp182-195.html
   My bibliography  Save this article

Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm

Author

Listed:
  • Bae, Taehan
  • Miljkovic, Tatjana

Abstract

The Erlang mixture with a common scale parameter is one of many popular models for modeling insurance losses. However, the actuarial literature recognizes and discusses some limitations of aforementioned model in approximate heavy-tailed distributions. In this paper, a size-biased left-truncated Lognormal (SB-ltLN) mixture is proposed as a robust alternative to the Erlang mixture for modeling left-truncated insurance losses with a heavy tail. The weak denseness property of the weighted Lognormal mixture is studied along with the tail behavior. Explicit analytical solutions are derived for moments and Tail Value at Risk based on the proposed model. An extension of the regularized expectation–maximization (REM) algorithm with Shannon's entropy weights (ewREM) is introduced for parameter estimation and variability assessment. The Operational Riskdata eXchange's left-truncated internal fraud loss data set is used to illustrate applications of the proposed model. Finally, the results of a simulation study show promising performance of the proposed SB-ltLN mixture in different simulation settings.

Suggested Citation

  • Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
  • Handle: RePEc:eee:insuma:v:117:y:2024:i:c:p:182-195
    DOI: 10.1016/j.insmatheco.2024.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Regularized EM algorithm; Shannon entropy; Size-biased mixture; Lognormal distribution; Left-truncated insurance losses;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:117:y:2024:i:c:p:182-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.