Two-sided distributions with applications in insurance loss modeling
Author
Abstract
Suggested Citation
DOI: 10.1007/s10260-024-00749-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- M. E. Mead, 2015. "Generalized Inverse Gamma Distribution and its Application in Reliability," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(7), pages 1426-1435, April.
- David Scollnik, 2007. "On composite lognormal-Pareto models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2007(1), pages 20-33.
- Teodorescu, Sandra & Vernic, Raluca, 2009. "Some Composite ExponentialPareto Models for Actuarial Prediction," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 82-100, December.
- Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
- Enrique Calderín-Ojeda & Chun Fung Kwok, 2016. "Modeling claims data with composite Stoppa models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(9), pages 817-836, October.
- Resnick, Sidney I., 1997. "Discussion of the Danish Data on Large Fire Insurance Losses," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 139-151, May.
- S. Nadarajah & S.A.A. Bakar, 2014. "New composite models for the Danish fire insurance data," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2014(2), pages 180-187.
- Jose Manuel Herrerias-Velasco & Rafael Herrerias-Pleguezuelo & Johan Rene van Dorp, 2009. "The generalized two-sided power distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(5), pages 573-587.
- Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
- McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
- Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
- Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
- Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
- Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
- Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
- Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
- Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
- Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
- Neveka M. Olmos & Emilio Gómez-Déniz & Osvaldo Venegas & Héctor W. Gómez, 2024. "A Composite Half-Normal-Pareto Distribution with Applications to Income and Expenditure Data," Mathematics, MDPI, vol. 12(11), pages 1-17, May.
- Girish Aradhye & George Tzougas & Deepesh Bhati, 2024. "A Copula-Based Bivariate Composite Model for Modelling Claim Costs," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
- Deepesh Bhati & Buddepu Pavan & Girish Aradhye, 2024. "On a New Mixed Pareto–Weibull Distribution: Its Parametric Regression Model with an Insurance Applications," Annals of Data Science, Springer, vol. 11(6), pages 2077-2107, December.
- Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
- Walena Anesu Marambakuyana & Sandile Charles Shongwe, 2024. "Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
- S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
- Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
- Athanasios Sachlas & Takis Papaioannou, 2014. "Residual and Past Entropy in Actuarial Science and Survival Models," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 79-99, March.
- Arthur Charpentier & Emmanuel Flachaire, 2021.
"Pareto Models for Risk Management,"
Dynamic Modeling and Econometrics in Economics and Finance, in: Gilles Dufrénot & Takashi Matsuki (ed.), Recent Econometric Techniques for Macroeconomic and Financial Data, pages 355-387,
Springer.
- Arthur Charpentier & Emmanuel Flachaire, 2019. "Pareto models for risk management," Working Papers hal-02423805, HAL.
- Arthur Charpentier & Emmanuel Flachaire, 2021. "Pareto Models for Risk Management," Post-Print hal-03186680, HAL.
- Arthur Charpentier & Emmanuel Flachaire, 2019. "Pareto models for risk management," Papers 1912.11736, arXiv.org.
- Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017.
"Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions,"
Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
- Tom Reynkens & Roel Verbelen & Jan Beirlant & Katrien Antonio, 2016. "Modeling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Working Papers of Department of Decision Sciences and Information Management, Leuven 549545, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Tom Reynkens & Roel Verbelen & Jan Beirlant & Katrien Antonio, 2016. "Modeling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 549545, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- Jackie Li & Jia Liu, 2023. "Claims Modelling with Three-Component Composite Models," Risks, MDPI, vol. 11(11), pages 1-16, November.
- Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012.
"Skew mixture models for loss distributions: A Bayesian approach,"
Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
- Bernardi, Mauro & Maruotti, Antonello & Lea, Petrella, 2012. "Skew mixture models for loss distributions: a Bayesian approach," MPRA Paper 39826, University Library of Munich, Germany.
More about this item
Keywords
Actuarial; Distribution theory; Conditional-value-at-risk; Heavy tails; Danish fire insurance data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:3:d:10.1007_s10260-024-00749-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.