IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2007y2007i1p20-33.html
   My bibliography  Save this article

On composite lognormal-Pareto models

Author

Listed:
  • David Scollnik

Abstract

Recently, Cooray & Ananda (2005) proposed a composite lognormal-Pareto model for use with loss payments data of the sort arising in the actuarial and insurance industries. Their model is based on a lognormal density up to an unknown threshold value and a two-parameter Pareto density thereafter. Here we identify and discuss limitations of this composite lognormal-Pareto model which are likely to severely curtail its potential for practical application to real world data sets. In addition, we present two different composite models based on lognormal and Pareto models in order to address these concerns. The performance of all three composite models is discussed and compared in the context of an example based upon a well-known fire insurance data set.

Suggested Citation

  • David Scollnik, 2007. "On composite lognormal-Pareto models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2007(1), pages 20-33.
  • Handle: RePEc:taf:sactxx:v:2007:y:2007:i:1:p:20-33
    DOI: 10.1080/03461230601110447
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461230601110447
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461230601110447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathias Silva & Michel Lubrano, 2023. "Bayesian correction for missing rich using a Pareto II tail with unknown threshold: Combining EU-SILC and WID data," AMSE Working Papers 2320, Aix-Marseille School of Economics, France.
    2. Neveka M. Olmos & Emilio Gómez-Déniz & Osvaldo Venegas & Héctor W. Gómez, 2024. "A Composite Half-Normal-Pareto Distribution with Applications to Income and Expenditure Data," Mathematics, MDPI, vol. 12(11), pages 1-17, May.
    3. Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
    4. Deepesh Bhati & Buddepu Pavan & Girish Aradhye, 2024. "On a New Mixed Pareto–Weibull Distribution: Its Parametric Regression Model with an Insurance Applications," Annals of Data Science, Springer, vol. 11(6), pages 2077-2107, December.
    5. Johan René van Dorp & Ekundayo Shittu, 2024. "Two-sided distributions with applications in insurance loss modeling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 827-861, July.
    6. Marco Bee, 2024. "On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 251-269, June.
    7. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
    8. Girish Aradhye & George Tzougas & Deepesh Bhati, 2024. "A Copula-Based Bivariate Composite Model for Modelling Claim Costs," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    9. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim & Nurulkamal Masseran, 2023. "Three-Part Composite Pareto Modelling for Income Distribution in Malaysia," Mathematics, MDPI, vol. 11(13), pages 1-15, June.
    10. Walena Anesu Marambakuyana & Sandile Charles Shongwe, 2024. "Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims," Mathematics, MDPI, vol. 12(2), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2007:y:2007:i:1:p:20-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.