IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v36y2018i3p456-470.html
   My bibliography  Save this article

Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models

Author

Listed:
  • Yi Yang
  • Wei Qian
  • Hui Zou

Abstract

The Tweedie GLM is a widely used method for predicting insurance premiums. However, the structure of the logarithmic mean is restricted to a linear form in the Tweedie GLM, which can be too rigid for many applications. As a better alternative, we propose a gradient tree-boosting algorithm and apply it to Tweedie compound Poisson models for pure premiums. We use a profile likelihood approach to estimate the index and dispersion parameters. Our method is capable of fitting a flexible nonlinear Tweedie model and capturing complex interactions among predictors. A simulation study confirms the excellent prediction performance of our method. As an application, we apply our method to an auto-insurance claim data and show that the new method is superior to the existing methods in the sense that it generates more accurate premium predictions, thus helping solve the adverse selection issue. We have implemented our method in a user-friendly R package that also includes a nice visualization tool for interpreting the fitted model.

Suggested Citation

  • Yi Yang & Wei Qian & Hui Zou, 2018. "Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 456-470, July.
  • Handle: RePEc:taf:jnlbes:v:36:y:2018:i:3:p:456-470
    DOI: 10.1080/07350015.2016.1200981
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2016.1200981
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2016.1200981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viktor Stojkoski & Petar Jolakoski & Igor Ivanovski, 2021. "The short‐run impact of COVID‐19 on the activity in the insurance industry in the Republic of North Macedonia," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(3), pages 221-242, September.
    2. Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
    3. Freek Holvoet & Katrien Antonio & Roel Henckaerts, 2023. "Neural networks for insurance pricing with frequency and severity data: a benchmark study from data preprocessing to technical tariff," Papers 2310.12671, arXiv.org, revised Aug 2024.
    4. Tingting Chen & Anthony Francis Desmond & Peter Adamic, 2023. "Generalized Additive Modelling of Dependent Frequency and Severity Distributions for Aggregate Claims," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 12(4), pages 1-1.
    5. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    6. Trufin, Julien & Denuit, Michel, 2021. "Boosting cost-complexity pruned trees On Tweedie responses: the ABT machine," LIDAM Discussion Papers ISBA 2021015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Dong-Young Lim, 2021. "A Neural Frequency-Severity Model and Its Application to Insurance Claims," Papers 2106.10770, arXiv.org, revised Feb 2024.
    8. Hainaut, Donatien & Trufin, Julien & Denuit, Michel, 2021. "Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log-link," LIDAM Discussion Papers ISBA 2021012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Hu, Changyue & Quan, Zhiyu & Chong, Wing Fung, 2022. "Imbalanced learning for insurance using modified loss functions in tree-based models," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 13-32.
    10. Carina Clemente & Gracinda R. Guerreiro & Jorge M. Bravo, 2023. "Modelling Motor Insurance Claim Frequency and Severity Using Gradient Boosting," Risks, MDPI, vol. 11(9), pages 1-20, September.
    11. Simon CK Lee, 2020. "Delta Boosting Implementation of Negative Binomial Regression in Actuarial Pricing," Risks, MDPI, vol. 8(1), pages 1-21, February.
    12. Xiaoshan Su & Manying Bai, 2020. "Stochastic gradient boosting frequency-severity model of insurance claims," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    13. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    14. Kevin Kuo & Daniel Lupton, 2020. "Towards Explainability of Machine Learning Models in Insurance Pricing," Papers 2003.10674, arXiv.org.
    15. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:36:y:2018:i:3:p:456-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.