IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p335-d1322663.html
   My bibliography  Save this article

Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims

Author

Listed:
  • Walena Anesu Marambakuyana

    (Department of Mathematical Statistics and Actuarial Science, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa)

  • Sandile Charles Shongwe

    (Department of Mathematical Statistics and Actuarial Science, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa)

Abstract

This research provides a comprehensive analysis of two-component non-Gaussian composite models and mixture models for insurance claims data. These models have gained attraction in actuarial literature because they provide flexible methods for curve-fitting. We consider 256 composite models and 256 mixture models derived from 16 popular parametric distributions. The composite models are developed by piecing together two distributions at a threshold value, while the mixture models are developed as convex combinations of two distributions on the same domain. Two real insurance datasets from different industries are considered. Model selection criteria and risk metrics of the top 20 models in each category (composite/mixture) are provided by using the ‘single-best model’ approach. Finally, for each of the datasets, composite models seem to provide better risk estimates.

Suggested Citation

  • Walena Anesu Marambakuyana & Sandile Charles Shongwe, 2024. "Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:335-:d:1322663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Scollnik, 2007. "On composite lognormal-Pareto models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2007(1), pages 20-33.
    2. Pigeon, Mathieu & Denuit, Michel, 2010. "Composite Lognormal-Pareto model with random threshold," LIDAM Discussion Papers ISBA 2010014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Bettina Grün & Tatjana Miljkovic, 2019. "Extending composite loss models using a general framework of advanced computational tools," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(8), pages 642-660, September.
    4. Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
    5. S. A. Abu Bakar & S. Nadarajah, 2019. "Risk measure estimation under two component mixture models with trimmed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(5), pages 835-852, April.
    6. Li, Zhengxiao & Beirlant, Jan & Meng, Shengwang, 2021. "Generalizing The Log-Moyal Distribution And Regression Models For Heavy-Tailed Loss Data," ASTIN Bulletin, Cambridge University Press, vol. 51(1), pages 57-99, January.
    7. Tatjana Miljkovic & Bettina Grün, 2021. "Using Model Averaging to Determine Suitable Risk Measure Estimates," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(4), pages 562-579, November.
    8. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    9. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    10. A. Asgharzadeh & S. Nadarajah & F. Sharafi, 2017. "Generalized inverse Lindley distribution with application to Danish fire insurance data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(10), pages 5001-5021, May.
    11. Jiahui Zou & Wendun Wang & Xinyu Zhang & Guohua Zou, 2022. "Optimal model averaging for divergent-dimensional Poisson regressions," Econometric Reviews, Taylor & Francis Journals, vol. 41(7), pages 775-805, August.
    12. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    2. Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    3. Girish Aradhye & George Tzougas & Deepesh Bhati, 2024. "A Copula-Based Bivariate Composite Model for Modelling Claim Costs," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    4. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    5. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    6. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    7. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    8. Tzougas, George & Jeong, Himchan, 2021. "An expectation-maximization algorithm for the exponential-generalized inverse Gaussian regression model with varying dispersion and shape for modelling the aggregate claim amount," LSE Research Online Documents on Economics 108210, London School of Economics and Political Science, LSE Library.
    9. Marco Bee, 2024. "On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 251-269, June.
    10. Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
    11. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
    12. Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.
    13. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim & Nurulkamal Masseran, 2023. "Three-Part Composite Pareto Modelling for Income Distribution in Malaysia," Mathematics, MDPI, vol. 11(13), pages 1-15, June.
    14. Naderi, Mehrdad & Hashemi, Farzane & Bekker, Andriette & Jamalizadeh, Ahad, 2020. "Modeling right-skewed financial data streams: A likelihood inference based on the generalized Birnbaum–Saunders mixture model," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    15. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    16. Kundan Singh & Amulya Kumar Mahto & Yogesh Mani Tripathi & Liang Wang, 2024. "Estimation in a multicomponent stress-strength model for progressive censored lognormal distribution," Journal of Risk and Reliability, , vol. 238(3), pages 622-642, June.
    17. Neveka M. Olmos & Emilio Gómez-Déniz & Osvaldo Venegas, 2022. "The Heavy-Tailed Gleser Model: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    18. Chen, Zezhun & Dassios, Angelos & Tzougas, George, 2022. "EM estimation for the bivariate mixed exponential regression model," LSE Research Online Documents on Economics 115132, London School of Economics and Political Science, LSE Library.
    19. Min Deng & Mostafa Aminzadeh & Min Ji, 2021. "Bayesian Predictive Analysis of Natural Disaster Losses," Risks, MDPI, vol. 9(1), pages 1-23, January.
    20. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:335-:d:1322663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.