IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i521p122-133.html
   My bibliography  Save this article

Pair Copula Constructions for Insurance Experience Rating

Author

Listed:
  • Peng Shi
  • Lu Yang

Abstract

In nonlife insurance, insurers use experience rating to adjust premiums to reflect policyholders’ previous claim experience. Performing prospective experience rating can be challenging when the claim distribution is complex. For instance, insurance claims are semicontinuous in that a fraction of zeros is often associated with an otherwise positive continuous outcome from a right-skewed and long-tailed distribution. Practitioners use credibility premium that is a special form of the shrinkage estimator in the longitudinal data framework. However, the linear predictor is not informative especially when the outcome follows a mixed distribution. In this article, we introduce a mixed vine pair copula construction framework for modeling semicontinuous longitudinal claims. In the proposed framework, a two-component mixture regression is employed to accommodate the zero inflation and thick tails in the claim distribution. The temporal dependence among repeated observations is modeled using a sequence of bivariate conditional copulas based on a mixed D-vine. We emphasize that the resulting predictive distribution allows insurers to incorporate past experience into future premiums in a nonlinear fashion and the classic linear predictor can be viewed as a nested case. In the application, we examine a unique claims dataset of government property insurance from the state of Wisconsin. Due to the discrepancies between the claim and premium distributions, we employ an ordered Lorenz curve to evaluate the predictive performance. We show that the proposed approach offers substantial opportunities for separating risks and identifying profitable business when compared with alternative experience rating methods. Supplementary materials for this article are available online.

Suggested Citation

  • Peng Shi & Lu Yang, 2018. "Pair Copula Constructions for Insurance Experience Rating," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 122-133, January.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:122-133
    DOI: 10.1080/01621459.2017.1330692
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1330692
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1330692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Oh, Rosy & Lee, Youngju & Zhu, Dan & Ahn, Jae Youn, 2021. "Predictive risk analysis using a collective risk model: Choosing between past frequency and aggregate severity information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 127-139.
    3. Quan Zhiyu & Valdez Emiliano A., 2018. "Predictive analytics of insurance claims using multivariate decision trees," Dependence Modeling, De Gruyter, vol. 6(1), pages 377-407, December.
    4. Safari-Katesari Hadi & Zaroudi Samira, 2020. "Count copula regression model using generalized beta distribution of the second kind," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 1-12, June.
    5. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Shi, Peng & Zhao, Zifeng, 2024. "Enhanced pricing and management of bundled insurance risks with dependence-aware prediction using pair copula construction," Journal of Econometrics, Elsevier, vol. 240(1).
    7. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    8. Nadja Klein & Michael Stanley Smith, 2021. "Bayesian variable selection for non‐Gaussian responses: a marginally calibrated copula approach," Biometrics, The International Biometric Society, vol. 77(3), pages 809-823, September.
    9. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2022. "Satisficing credibility for heterogeneous risks," European Journal of Operational Research, Elsevier, vol. 298(2), pages 752-768.
    10. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    11. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    12. Saeide Sefidi & Mojtaba Ganjali & Taban Baghfalaki, 2022. "Analysis of ordinal and continuous longitudinal responses using pair copula construction," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 255-280, August.
    13. Wang, Yunyun & Oka, Tatsushi & Zhu, Dan, 2023. "Bivariate distribution regression with application to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 215-232.
    14. Marta Nai Ruscone & Daniel Fernández, 2021. "Dynamics of HDI Index: Temporal Dependence Based on D-vine Copulas Model for Three-Way Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(2), pages 563-593, December.
    15. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    16. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    17. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    18. Li, Yinhuan & Fung, Tsz Chai & Peng, Liang & Qian, Linyi, 2023. "Diagnostic tests before modeling longitudinal actuarial data," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 310-325.
    19. Daniel Zängerle & Dirk Schiereck, 2023. "Modelling and predicting enterprise-level cyber risks in the context of sparse data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 434-462, April.
    20. Hadi Safari-Katesari & Samira Zaroudi, 2020. "Count copula regression model using generalized beta distribution of the second kind," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:122-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.