IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v23y2019i4p573-590.html
   My bibliography  Save this article

An Individual Risk Model for Premium Calculation Based on Quantile: A Comparison between Generalized Linear Models and Quantile Regression

Author

Listed:
  • Fabio Baione
  • Davide Biancalana

Abstract

This article deals with the use of quantile regression and generalized linear models for a premium calculation based on quantiles. A premium principle is a functional that assigns a usually loaded premium to any distribution of claims. The loaded premium is generally greater than the expected value of the loss and the difference is considered to be a risk margin or a safety loading. The failure of a right charge of individual risk rate exposes the insurer to adverse selection and, consequently, to deteriorating financial results. The article aim is to define the individual pure premium rates and the corresponding risk margin in balance with some profit or solvency constraints. We develop a ratemaking process based on a two-part model using quantile regression and a gamma generalized linear model, respectively, in order to estimate the claim’s severity quantiles. Generalized linear models focus on the estimation of the mean of the conditional loss distribution but have some drawbacks in assessing distribution moments other than the mean and are very sensitive to outliers. On the contrary, quantile regression exceeds these limits leading to the estimate of conditional quantiles and is more accurate for a better measurement of the variability of a risk class. The proposed methodology for premium calculation allows us to find further limits of the generalized linear model as the solution we found, under specific assumptions for a generalized linear model, is equivalent to the application of the expected value premium principle. Finally, the methodology we suggest for the two-part quantile regression allows reducing the practical issue of overmodeling and over-parameterization with respect to other proposals on the same topic.

Suggested Citation

  • Fabio Baione & Davide Biancalana, 2019. "An Individual Risk Model for Premium Calculation Based on Quantile: A Comparison between Generalized Linear Models and Quantile Regression," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(4), pages 573-590, October.
  • Handle: RePEc:taf:uaajxx:v:23:y:2019:i:4:p:573-590
    DOI: 10.1080/10920277.2019.1604238
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2019.1604238
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2019.1604238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Canan Hamurkaroğlu & Sümeyra Sezer Kaplan, 2024. "Actuarial premium calculation for beekeeping insurance in Turkiye," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(3), pages 448-473, July.
    2. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    3. Hong Li & Qifan Song & Jianxi Su, 2021. "Robust estimates of insurance misrepresentation through kernel quantile regression mixtures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 625-663, September.
    4. Liang Yang & Zhengxiao Li & Shengwang Meng, 2020. "Risk Loadings in Classification Ratemaking," Papers 2002.01798, arXiv.org, revised Jan 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:23:y:2019:i:4:p:573-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.