IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v71y2016icp179-188.html
   My bibliography  Save this article

Tail conditional moments for elliptical and log-elliptical distributions

Author

Listed:
  • Landsman, Zinoviy
  • Makov, Udi
  • Shushi, Tomer

Abstract

In this paper we provide the tail conditional moments for the class of elliptical distributions, which was introduced in Kelker (1970) and was widely discussed in Gupta et al. (2013) and for the class of log-elliptical distributions. These families of distributions include some important members such as the normal, Student-t, logistic, Laplace, and log-normal distributions. We give analytic formulae for the nth higher order unconditional moments of elliptical distributions, which has not been provided before. We also propose novel risk measures, the tail conditional skewness and the tail conditional kurtosis, for examining the skewness and the kurtosis of the tail of loss distributions, respectively.

Suggested Citation

  • Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Tail conditional moments for elliptical and log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 179-188.
  • Handle: RePEc:eee:insuma:v:71:y:2016:i:c:p:179-188
    DOI: 10.1016/j.insmatheco.2016.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715302778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Shouwei & Tse, Yiu-Kuen, 2015. "Intraday Value-at-Risk: An asymmetric autoregressive conditional duration approach," Journal of Econometrics, Elsevier, vol. 189(2), pages 437-446.
    2. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    3. Yang, Yang & Ignatavičiūtė, Eglė & Šiaulys, Jonas, 2015. "Conditional tail expectation of randomly weighted sums with heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 20-28.
    4. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    5. Joseph Kim, 2010. "Conditional Tail Moments of the Exponential Family and Its Related Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(2), pages 198-216.
    6. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    7. Landsman, Zinoviy & Pat, Nika & Dhaene, Jan, 2013. "Tail Variance premiums for log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 441-447.
    8. Guy Kaplanski & Haim Levy, 2015. "Value-at-risk capital requirement regulation, risk taking and asset allocation: a mean-variance analysis," The European Journal of Finance, Taylor & Francis Journals, vol. 21(3), pages 215-241, February.
    9. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, September.
    10. Chen, Bryant & Hsu, William W.Y. & Ho, Jan-Ming & Kao, Ming-Yang, 2014. "Linear-time accurate lattice algorithms for tail conditional expectation," Algorithmic Finance, IOS Press, vol. 3(1-2), pages 87-140.
    11. Landsman, Zinoviy, 2010. "On the Tail Mean-Variance optimal portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 547-553, June.
    12. Furman, Edward & Landsman, Zinoviy, 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 635-649, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bingjie & Li, Jinzhu, 2024. "Asymptotic results on tail moment for light-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 43-55.
    2. Xiangyu Han & Chuancun Yin, 2022. "Tail Conditional Moments for Location-Scale Mixture of Elliptical Distributions," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    3. Yiqing Chen, 2019. "A Renewal Shot Noise Process with Subexponential Shot Marks," Risks, MDPI, vol. 7(2), pages 1-8, June.
    4. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    5. Nicole Bauerle & Tomer Shushi, 2019. "Risk Management with Tail Quasi-Linear Means," Papers 1902.06941, arXiv.org, revised Jan 2020.
    6. Baishuai Zuo & Chuancun Yin, 2022. "Doubly truncated moment risk measures for elliptical distributions," Papers 2203.01091, arXiv.org.
    7. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2018. "A multivariate tail covariance measure for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 27-35.
    8. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
    9. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    10. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
    11. Shushi, Tomer, 2019. "The Minkowski length of a spherical random vector," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 104-107.
    12. Shushi, Tomer, 2019. "A note on the coefficients of elliptical random variables," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 153-155.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    2. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    3. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
    4. Eini, Esmat Jamshidi & Khaloozadeh, Hamid, 2021. "The tail mean–variance optimal portfolio selection under generalized skew-elliptical distribution," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 44-50.
    5. Owadally, Iqbal & Landsman, Zinoviy, 2013. "A characterization of optimal portfolios under the tail mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 213-221.
    6. Xiangyu Han & Chuancun Yin, 2022. "Tail Conditional Moments for Location-Scale Mixture of Elliptical Distributions," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    7. Kim, Joseph H.T. & Kim, So-Yeun, 2019. "Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 145-157.
    8. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    9. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    10. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    11. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    12. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    13. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
    14. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.
    15. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    16. Shushi, Tomer, 2019. "The Minkowski length of a spherical random vector," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 104-107.
    17. Landsman, Zinoviy & Pat, Nika & Dhaene, Jan, 2013. "Tail Variance premiums for log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 441-447.
    18. Gareth W. Peters & Rodrigo S. Targino & Mario V. Wüthrich, 2017. "Bayesian Modelling, Monte Carlo Sampling and Capital Allocation of Insurance Risks," Risks, MDPI, vol. 5(4), pages 1-51, September.
    19. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    20. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:71:y:2016:i:c:p:179-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.