IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i2p476-493.html
   My bibliography  Save this article

Empirical risk assessment of maintenance costs under full-service contracts

Author

Listed:
  • Deprez, Laurens
  • Antonio, Katrien
  • Boute, Robert

Abstract

We provide a data-driven framework to conduct a risk assessment, including data pre-processing, exploration, and statistical modeling, on a portfolio of full-service maintenance contracts. These contracts cover all maintenance-related costs for a fixed, upfront fee during a predetermined horizon. Charging each contract a price proportional to its risk prevents adverse selection by incentivizing low risk (i.e., maintenance-light) profiles to not renege on their agreements. We borrow techniques from non-life insurance pricing and tailor them to the setting of maintenance contracts to assess the risk and estimate the expected maintenance costs under a full-service contract. We apply the framework on a portfolio of about 5000 full-service contracts of industrial equipment and show how a data-driven analysis based on contract and machine characteristics, or risk factors, supports a differentiated, risk-based break-even tariff plan. We employ generalized additive models (GAMs) to predict the risk factors’ impact on the frequency (number of) and severity (cost) of maintenance interventions. GAMs are interpretable yet flexible statistical models that capture the effect of both continuous and categorical risk factors. Our predictive models quantify the impact of the contract and machine type, service history, and machine running hours on the contract cost. We additionally utilize the predictive cost distributions of our models to augment the break-even price with the appropriate risk margins to further protect against the inherently stochastic nature of the maintenance costs. The framework shows how maintenance intervention data can set up a differentiated tariff plan.

Suggested Citation

  • Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2023. "Empirical risk assessment of maintenance costs under full-service contracts," European Journal of Operational Research, Elsevier, vol. 304(2), pages 476-493.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:2:p:476-493
    DOI: 10.1016/j.ejor.2022.03.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722002879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.03.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    2. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    3. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, December.
    4. Jose A. Guajardo & Morris A. Cohen & Sang-Hyun Kim & Serguei Netessine, 2012. "Impact of Performance-Based Contracting on Product Reliability: An Empirical Analysis," Management Science, INFORMS, vol. 58(5), pages 961-979, May.
    5. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    6. Frees, Edward W. & Meyers, Glenn & Cummings, A. David, 2011. "Summarizing Insurance Scores Using a Gini Index," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1085-1098.
    7. Lopez, Olivier, 2019. "A censored copula model for micro-level claim reserving," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 1-14.
    8. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    9. Huber, Sebastian & Spinler, Stefan, 2012. "Pricing of full-service repair contracts," European Journal of Operational Research, Elsevier, vol. 222(1), pages 113-121.
    10. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    11. Edward W. (Jed) Frees & Glenn Meyers & A. David Cummings, 2014. "Insurance Ratemaking and a Gini Index," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(2), pages 335-366, June.
    12. Denuit, Michel & Lang, Stefan, 2004. "Non-life rate-making with Bayesian GAMs," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 627-647, December.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Luo, Ming & Wu, Shaomin, 2018. "A mean-variance optimisation approach to collectively pricing warranty policies," International Journal of Production Economics, Elsevier, vol. 196(C), pages 101-112.
    15. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," LIDAM Reprints ISBA 2014006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Luo, Ming & Wu, Shaomin, 2018. "A value-at-risk approach to optimisation of warranty policy," European Journal of Operational Research, Elsevier, vol. 267(2), pages 513-522.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    2. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    3. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    4. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    5. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    6. Devriendt, Sander & Antonio, Katrien & Reynkens, Tom & Verbelen, Roel, 2021. "Sparse regression with Multi-type Regularized Feature modeling," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 248-261.
    7. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    8. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    9. Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
    10. Denuit, Michel & Legrand, Catherine, 2016. "Risk Classification in Life Insurance: Extension to Continuous Covariates," LIDAM Discussion Papers ISBA 2016045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Tzougas, George & Vrontos, Spyridon D. & Frangos, Nickolaos E., 2015. "Risk classification for claim counts and losses using regression models for location, scale and shape," LSE Research Online Documents on Economics 70921, London School of Economics and Political Science, LSE Library.
    12. Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
    13. Aivars Spilbergs & Andris Fomins & Māris Krastiņš, 2022. "Multivariate Modelling of Motor Third Party Liability Insurance Claims," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 8(1), pages 5-18.
    14. Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
    15. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    16. Shengkun Xie & Anna T. Lawniczak, 2018. "Estimating Major Risk Factor Relativities in Rate Filings Using Generalized Linear Models," IJFS, MDPI, vol. 6(4), pages 1-14, October.
    17. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    18. Yves Staudt & Joël Wagner, 2022. "Factors Driving Duration to Cross-Selling in Non-Life Insurance: New Empirical Evidence from Switzerland," Risks, MDPI, vol. 10(10), pages 1-20, September.
    19. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Cadena, Meitner & Denuit, Michel, 2016. "Semi-parametric accelerated hazard relational models with applications to mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:2:p:476-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.