A Copula-Based Bivariate Composite Model for Modelling Claim Costs
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- David Scollnik, 2007. "On composite lognormal-Pareto models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2007(1), pages 20-33.
- Bettina Grün & Tatjana Miljkovic, 2019. "Extending composite loss models using a general framework of advanced computational tools," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(8), pages 642-660, September.
- Wang, Yinzhi & Hobæk Haff, Ingrid & Huseby, Arne, 2020. "Modelling extreme claims via composite models and threshold selection methods," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 257-268.
- S. Nadarajah & S.A.A. Bakar, 2014. "New composite models for the Danish fire insurance data," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2014(2), pages 180-187.
- Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
- Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
- Li, Zhengxiao & Wang, Fei & Zhao, Zhengtang, 2024. "A new class of composite GBII regression models with varying threshold for modeling heavy-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 45-66.
- Johan René van Dorp & Ekundayo Shittu, 2024. "Two-sided distributions with applications in insurance loss modeling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 827-861, July.
- Walena Anesu Marambakuyana & Sandile Charles Shongwe, 2024. "Composite and Mixture Distributions for Heavy-Tailed Data—An Application to Insurance Claims," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
- Marco Bee, 2024. "On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 251-269, June.
- Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
- Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim & Nurulkamal Masseran, 2023. "Three-Part Composite Pareto Modelling for Income Distribution in Malaysia," Mathematics, MDPI, vol. 11(13), pages 1-15, June.
- Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
- Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
- Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
- Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
- Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
- Albrecher Hansjörg & Kantor Josef, 2002. "Simulation of ruin probabilities for risk processes of Markovian type," Monte Carlo Methods and Applications, De Gruyter, vol. 8(2), pages 111-128, December.
- Y. Malevergne & D. Sornette, 2003.
"Testing the Gaussian copula hypothesis for financial assets dependences,"
Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
- Y. Malevergne & D. Sornette, 2001. "Testing the Gaussian Copula Hypothesis for Financial Assets Dependences," Finance 0111003, University Library of Munich, Germany.
- Yannick Malevergne & Didier Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependence," Post-Print hal-02312888, HAL.
- Yannick Malevergne & Didier Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Post-Print hal-00520539, HAL.
- Y. Malevergne & D. Sornette, 2001. "Testing the Gaussian Copula Hypothesis for Financial Assets Dependences," Papers cond-mat/0111310, arXiv.org.
- Dominik Kortschak & Hansjörg Albrecher, 2009. "Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 279-306, September.
- Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
- Hoyle, Edward & Mengütürk, Levent Ali, 2013. "Archimedean survival processes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 1-15.
- Chen, Zezhun & Dassios, Angelos & Tzougas, George, 2022. "EM estimation for the bivariate mixed exponential regression model," LSE Research Online Documents on Economics 115132, London School of Economics and Political Science, LSE Library.
- Paulson, Nicholas David, 2004. "Insuring uncertainty in value-added agriculture: ethanol," ISU General Staff Papers 2004010108000018198, Iowa State University, Department of Economics.
- Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
More about this item
Keywords
copulas; dependence parameter; Gumbel copula; Inverse Weibull distribution; Inverse Burr distribution; Paralogistic distribution; Weibull distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:350-:d:1323725. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.