IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v22y2018i4p554-573.html
   My bibliography  Save this article

Fat-Tailed Regression Modeling with Spliced Distributions

Author

Listed:
  • Guojun Gan
  • Emiliano A. Valdez

Abstract

Insurance claims data usually contain a large number of zeros and exhibits fat-tail behavior. Misestimation of one end of the tail impacts the other end of the tail of the claims distribution and can affect both the adequacy of premiums and needed reserves to hold. In addition, insured policyholders in a portfolio are naturally non-homogeneous. It is an ongoing challenge for actuaries to be able to build a predictive model that will simultaneously capture these peculiar characteristics of claims data and policyholder heterogeneity. Such models can help make improved predictions and thereby ease the decision-making process. This article proposes the use of spliced regression models for fitting insurance loss data. A primary advantage of spliced distributions is their flexibility to accommodate modeling different segments of the claims distribution with different parametric models. The threshold that breaks the segments is assumed to be a parameter, and this presents an additional challenge in the estimation. Our simulation study demonstrates the effectiveness of using multistage optimization for likelihood inference and at the same time the repercussions of model misspecification. For purposes of illustration, we consider three-component spliced regression models: the first component contains zeros, the second component models the middle segment of the loss data, and the third component models the tail segment of the loss data. We calibrate these proposed models and evaluate their performance using a Singapore auto insurance claims dataset. The estimation results show that the spliced regression model performs better than the Tweedie regression model in terms of tail fitting and prediction accuracy.

Suggested Citation

  • Guojun Gan & Emiliano A. Valdez, 2018. "Fat-Tailed Regression Modeling with Spliced Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(4), pages 554-573, October.
  • Handle: RePEc:taf:uaajxx:v:22:y:2018:i:4:p:554-573
    DOI: 10.1080/10920277.2018.1462718
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2018.1462718
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2018.1462718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fissler, Tobias & Merz, Michael & Wüthrich, Mario V., 2023. "Deep quantile and deep composite triplet regression," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 94-112.
    2. Tobias Fissler & Michael Merz & Mario V. Wuthrich, 2021. "Deep Quantile and Deep Composite Model Regression," Papers 2112.03075, arXiv.org.
    3. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:22:y:2018:i:4:p:554-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.