Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127232
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sun, Xu & Liu, Yanli & Deng, Liangchen, 2020. "Reliability assessment of cyber-physical distribution network based on the fault tree," Renewable Energy, Elsevier, vol. 155(C), pages 1411-1424.
- Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
- Murray, William & Adonis, Marco & Raji, Atanda, 2021. "Voltage control in future electrical distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Utama, Christian & Meske, Christian & Schneider, Johannes & Ulbrich, Carolin, 2022. "Reactive power control in photovoltaic systems through (explainable) artificial intelligence," Applied Energy, Elsevier, vol. 328(C).
- Panda, Mitali & Nayak, Yogesh Kumar, 2022. "Impact analysis of renewable energy Distributed Generation in deregulated electricity markets: A Context of Transmission Congestion Problem," Energy, Elsevier, vol. 254(PC).
- Ranjbar, Hossein & Kazemi, Mostafa & Amjady, Nima & Zareipour, Hamidreza & Hosseini, Seyed Hamid, 2022. "Maximizing the utilization of existing grids for renewable energy integration," Renewable Energy, Elsevier, vol. 189(C), pages 618-629.
- Han, Kunlun & Yang, Kai & Yin, Linfei, 2022. "Lightweight actor-critic generative adversarial networks for real-time smart generation control of microgrids," Applied Energy, Elsevier, vol. 317(C).
- Dehghani, Nariman L. & Jeddi, Ashkan B. & Shafieezadeh, Abdollah, 2021. "Intelligent hurricane resilience enhancement of power distribution systems via deep reinforcement learning," Applied Energy, Elsevier, vol. 285(C).
- Yin, Linfei & Gao, Qi & Zhao, Lulin & Wang, Tao, 2020. "Expandable deep learning for real-time economic generation dispatch and control of three-state energies based future smart grids," Energy, Elsevier, vol. 191(C).
- Perez-Molina, M.J. & Larruskain, D.M. & Eguia Lopez, P. & Buigues, G. & Valverde, V., 2021. "Review of protection systems for multi-terminal high voltage direct current grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Cao, Di & Zhao, Junbo & Hu, Weihao & Ding, Fei & Yu, Nanpeng & Huang, Qi & Chen, Zhe, 2022. "Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
- Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2022. "Coordinated voltage control in unbalanced distribution networks with two-stage distributionally robust chance-constrained receding horizon control," Renewable Energy, Elsevier, vol. 198(C), pages 907-915.
- Chaoyang Zhang & Zhengxu Wang & Kai Ding & Felix T.S. Chan & Weixi Ji, 2020. "An energy-aware cyber physical system for energy Big data analysis and recessive production anomalies detection in discrete manufacturing workshops," International Journal of Production Research, Taylor & Francis Journals, vol. 58(23), pages 7059-7077, December.
- Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
- Momchil S. Tomov & Eric Schulz & Samuel J. Gershman, 2021. "Multi-task reinforcement learning in humans," Nature Human Behaviour, Nature, vol. 5(6), pages 764-773, June.
- Xu, Luo & Guo, Qinglai & Sheng, Yujie & Muyeen, S.M. & Sun, Hongbin, 2021. "On the resilience of modern power systems: A comprehensive review from the cyber-physical perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Hassani, Hossein & Razavi-Far, Roozbeh & Saif, Mehrdad, 2022. "Real-time out-of-step prediction control to prevent emerging blackouts in power systems: A reinforcement learning approach," Applied Energy, Elsevier, vol. 314(C).
- Huang, Manyun & Wei, Zhinong & Lin, Yuzhang, 2022. "Forecasting-aided state estimation based on deep learning for hybrid AC/DC distribution systems," Applied Energy, Elsevier, vol. 306(PB).
- Qiao, Dalei & Wu, Shun & Li, Ge & You, Jiaxing & Zhang, Juan & Shen, Bilong, 2022. "Wind speed forecasting using multi-site collaborative deep learning for complex terrain application in valleys," Renewable Energy, Elsevier, vol. 189(C), pages 231-244.
- Eros D. Escobar & Tatiana Manrique & Idi A. Isaac, 2022. "Campus Microgrid Data-Driven Model Identification and Secondary Voltage Control," Energies, MDPI, vol. 15(21), pages 1-19, October.
- Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
- Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Lai, Qiupin & Liu, Chengxi & Sun, Kai, 2021. "Vulnerability assessment for voltage stability based on solvability regions of decoupled power flow equations," Applied Energy, Elsevier, vol. 304(C).
- Naval, Natalia & Sánchez, Raul & Yusta, Jose M., 2020. "A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation," Renewable Energy, Elsevier, vol. 151(C), pages 57-69.
- David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
- Alghamdi, Baheej & Cañizares, Claudio, 2022. "Frequency and voltage coordinated control of a grid of AC/DC microgrids," Applied Energy, Elsevier, vol. 310(C).
- Aragón, Gustavo & Pandian, Vinoth & Krauß, Veronika & Werner-Kytölä, Otilia & Thybo, Gitte & Pautasso, Elisa, 2022. "Feasibility and economical analysis of energy storage systems as enabler of higher renewable energy sources penetration in an existing grid," Energy, Elsevier, vol. 251(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chaudhary, Aniket Karan & Roy, Satyabrata & Guha, Dipayan & Negi, Richa & Banerjee, Subrata, 2024. "Adaptive cyber-tolerant finite-time frequency control framework for renewable-integrated power system under deception and periodic denial-of-service attacks," Energy, Elsevier, vol. 302(C).
- Yin, Linfei & Zheng, Da, 2024. "Decomposition prediction fractional-order PID reinforcement learning for short-term smart generation control of integrated energy systems," Applied Energy, Elsevier, vol. 355(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).
- Zhao, Lulin & Yin, Linfei, 2024. "Knowledge-shareable adaptive deep dynamic programming for hierarchical generation control of distributed high-percentage renewable energy systems," Renewable Energy, Elsevier, vol. 228(C).
- Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
- Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
- Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
- Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
- Zhang, Bin & Hu, Weihao & Xu, Xiao & Li, Tao & Zhang, Zhenyuan & Chen, Zhe, 2022. "Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 433-448.
- Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
- Liu, Yanli & Feng, Haonan & Hatziargyriou, Nikos D., 2023. "Multi-stage collaborative resilient enhancement strategy for coupling faults in distribution cyber physical systems," Applied Energy, Elsevier, vol. 348(C).
- Yin, Linfei & Zheng, Da, 2024. "Decomposition prediction fractional-order PID reinforcement learning for short-term smart generation control of integrated energy systems," Applied Energy, Elsevier, vol. 355(C).
- Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
- Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
- Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
- Nathan Companez & Aldeida Aleti, 2016. "Can Monte-Carlo Tree Search learn to sacrifice?," Journal of Heuristics, Springer, vol. 22(6), pages 783-813, December.
- Oluwafemi Emmanuel Oni & Omowunmi Mary Longe, 2023. "Analysis of Secondary Controller on MTDC Link with Solar PV Integration for Inter-Area Power Oscillation Damping," Energies, MDPI, vol. 16(17), pages 1-18, August.
- Zhewei Zhang & Youngjin Yoo & Kalle Lyytinen & Aron Lindberg, 2021. "The Unknowability of Autonomous Tools and the Liminal Experience of Their Use," Information Systems Research, INFORMS, vol. 32(4), pages 1192-1213, December.
- Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
- Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
- Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
- Li Xia, 2020. "Risk‐Sensitive Markov Decision Processes with Combined Metrics of Mean and Variance," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2808-2827, December.
More about this item
Keywords
Cyber-physical social power systems; Artificial emotion; Q learning; Deep learning; Real-time smart voltage control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006266. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.