IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp1411-1424.html
   My bibliography  Save this article

Reliability assessment of cyber-physical distribution network based on the fault tree

Author

Listed:
  • Sun, Xu
  • Liu, Yanli
  • Deng, Liangchen

Abstract

Advanced sensors, information and communication technology and distributed computing is widely and deeply integrated into the power distribution network to achieve the effective operation and control of large amount of distributed energy resources (DER). The power distribution network becomes a typical cyber physical system (CPS), called as the cyber-physical distribution network (CPDN). A reliability assessment method for CPDN considering the interdependence between physical system and cyber system in the whole fault processing is proposed in this paper. The reliability model of the sequential fault processing and corresponding results considering the cyber impact is established based on the fault tree. Two indices are proposed to evaluate the cyber impact on the dispatch ability of distributed generation. Improved RBTS BUS6 system is taken as the study case of CPDN to illustrate the proposed method and the impact of cyber system reliability, penetration level and location of distributed generation, and the penetration level of electric vehicles taking part in the demand response are analyzed.

Suggested Citation

  • Sun, Xu & Liu, Yanli & Deng, Liangchen, 2020. "Reliability assessment of cyber-physical distribution network based on the fault tree," Renewable Energy, Elsevier, vol. 155(C), pages 1411-1424.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:1411-1424
    DOI: 10.1016/j.renene.2020.03.188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arifujjaman, Md. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Reliability analysis of grid connected small wind turbine power electronics," Applied Energy, Elsevier, vol. 86(9), pages 1617-1623, September.
    2. Adefarati, T. & Bansal, R.C., 2017. "Reliability assessment of distribution system with the integration of renewable distributed generation," Applied Energy, Elsevier, vol. 185(P1), pages 158-171.
    3. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    4. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    5. Adefarati, T. & Bansal, R.C., 2017. "Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources," Applied Energy, Elsevier, vol. 206(C), pages 911-933.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    2. Aslani, Mehrdad & Faraji, Jamal & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors," Applied Energy, Elsevier, vol. 315(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Tengqi & Xuan, Ang & Wang, Yafei & Li, Guanglei & Fang, Juan & Liu, Zhengguang, 2023. "Energy efficiency evaluation and optimization of active distribution networks with building integrated photovoltaic systems," Renewable Energy, Elsevier, vol. 219(P1).
    2. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    3. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    4. Saheed Lekan Gbadamosi & Nnamdi I. Nwulu, 2020. "Optimal Power Dispatch and Reliability Analysis of Hybrid CHP-PV-Wind Systems in Farming Applications," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    5. Adefarati, T. & Bansal, R.C. & Naidoo, R. & Onaolapo, K.A. & Bettayeb, M. & Olulope, P.K. & Sobowale, A.A., 2024. "Design and techno-economic assessment of a standalone photovoltaic-diesel-battery hybrid energy system for electrification of rural areas: A step towards sustainable development," Renewable Energy, Elsevier, vol. 227(C).
    6. Dong Zhang & GM Shafiullah & Choton Kanti Das & Kok Wai Wong, 2023. "Optimal Allocation of Battery Energy Storage Systems to Enhance System Performance and Reliability in Unbalanced Distribution Networks," Energies, MDPI, vol. 16(20), pages 1-35, October.
    7. Hereher, Mohamed & El Kenawy, Ahmed M., 2020. "Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach," Renewable Energy, Elsevier, vol. 161(C), pages 662-675.
    8. Mendoza-Vizcaino, Javier & Raza, Muhammad & Sumper, Andreas & Díaz-González, Francisco & Galceran-Arellano, Samuel, 2019. "Integral approach to energy planning and electric grid assessment in a renewable energy technology integration for a 50/50 target applied to a small island," Applied Energy, Elsevier, vol. 233, pages 524-543.
    9. Adefarati, T. & Bansal, R.C. & Bettayeb, M. & Naidoo, R., 2021. "Optimal energy management of a PV-WTG-BSS-DG microgrid system," Energy, Elsevier, vol. 217(C).
    10. Hassen Soualah & Gurvan Jodin & Roman Le Goff Latimier & Hamid Ben Ahmed, 2023. "Energy Not Exchanged: A Metric to Quantify Energy Resilience in Smart Grids," Sustainability, MDPI, vol. 15(3), pages 1-18, February.
    11. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    12. Maciej Kuboń & Zbigniew Skibko & Sylwester Tabor & Urszula Malaga-Toboła & Andrzej Borusiewicz & Wacław Romaniuk & Janusz Zarajczyk & Pavel Neuberger, 2023. "Analysis of Voltage Distortions in the Power Grid Arising from Agricultural Biogas Plant Operation," Energies, MDPI, vol. 16(17), pages 1-21, August.
    13. Olga A. Filina & Nikita V. Martyushev & Boris V. Malozyomov & Vadim Sergeevich Tynchenko & Viktor Alekseevich Kukartsev & Kirill Aleksandrovich Bashmur & Pavel P. Pavlov & Tatyana Aleksandrovna Panfil, 2023. "Increasing the Efficiency of Diagnostics in the Brush-Commutator Assembly of a Direct Current Electric Motor," Energies, MDPI, vol. 17(1), pages 1-24, December.
    14. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    15. Yohannes Biru Aemro & Pedro Moura & Aníbal T. de Almeida, 2020. "Design and Modeling of a Standalone DC-Microgrid for Off-Grid Schools in Rural Areas of Developing Countries," Energies, MDPI, vol. 13(23), pages 1-24, December.
    16. Escalera, Alberto & Hayes, Barry & Prodanović, Milan, 2018. "A survey of reliability assessment techniques for modern distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 344-357.
    17. Mi, Yang & Chen, Xin & Ji, Hongpeng & Ji, Liang & Fu, Yang & Wang, Chengshan & Wang, Jianhui, 2019. "The coordinated control strategy for isolated DC microgrid based on adaptive storage adjustment without communication," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Aslani, Mehrdad & Faraji, Jamal & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors," Applied Energy, Elsevier, vol. 315(C).
    19. Zeng, Bo & Luo, Yangfan, 2022. "Potential of harnessing operational flexibility from public transport hubs to improve reliability and economic performance of urban multi-energy systems: A holistic assessment framework," Applied Energy, Elsevier, vol. 322(C).
    20. Adefarati, T. & Bansal, R.C. & Bettayeb, M. & Naidoo, R., 2022. "Technical, economic, and environmental assessment of the distribution power system with the application of renewable energy technologies," Renewable Energy, Elsevier, vol. 199(C), pages 278-297.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:1411-1424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.