IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipcs0360544222013068.html
   My bibliography  Save this article

Impact analysis of renewable energy Distributed Generation in deregulated electricity markets: A Context of Transmission Congestion Problem

Author

Listed:
  • Panda, Mitali
  • Nayak, Yogesh Kumar

Abstract

In the present markets, transmission congestion is contemplated to play a crucial role in the initiation of cascading outages, which compels the system to collapse. It is to be alleviated as soon as possible to maximise profits; or else the cost effective supply will be restricted from reaching the end consumers. Furthermore, global warming, the most serious issue being overlooked by conventional congestion management approaches, causes severe environmental consequences like increase in temperature and declining water supplies. The incorporation of renewable energy (RE) or associated technologies is indeed an excellent countermeasure to global warming. Hence, in this work, optimal capacities of solar based Distributed Generation (DG) are inserted to acknowledge the transmission network's N-1 contingency scenario. A multi-objective framework utilising the Grey Wolf Optimizer (GWO) is presented to obtain the exact size of solar DG by minimizing the costs, voltage deviations and power losses of the network simultaneously. Also, a new heuristic ranking based on the MW flow and net power injections is proposed to determine the most critical buses for the optimal placement of the solar DG. To assess the viability of the proposed approach, it is evaluated using a variety of case studies, including constant and voltage dependent load models in both planning stage and real time operation stage. The capacities of unity and 0.9 lagging power factor (pf) DGs have been obtained for standard IEEE system to check the effectiveness of the approach. The final optimal solutions obtained by GWO are compared with the existing algorithms available in the literature to show the superiority and the potentiality in solving the multi-objective framework. The simulation results emphasise the importance of the proposed approach in terms of costs, voltages and losses as it delivers better performance when compared to existing models in the literature.

Suggested Citation

  • Panda, Mitali & Nayak, Yogesh Kumar, 2022. "Impact analysis of renewable energy Distributed Generation in deregulated electricity markets: A Context of Transmission Congestion Problem," Energy, Elsevier, vol. 254(PC).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013068
    DOI: 10.1016/j.energy.2022.124403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    2. Esmaili, Masoud & Shayanfar, Heidar Ali & Moslemi, Ramin, 2014. "Locating series FACTS devices for multi-objective congestion management improving voltage and transient stability," European Journal of Operational Research, Elsevier, vol. 236(2), pages 763-773.
    3. Das, Sayan & Ray, Avishek & De, Sudipta, 2020. "Optimum combination of renewable resources to meet local power demand in distributed generation: A case study for a remote place of India," Energy, Elsevier, vol. 209(C).
    4. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    5. Esmaili, Masoud & Shayanfar, Heidar Ali & Amjady, Nima, 2009. "Multi-objective congestion management incorporating voltage and transient stabilities," Energy, Elsevier, vol. 34(9), pages 1401-1412.
    6. Prajapati, Vijaykumar K. & Mahajan, Vasundhara, 2021. "Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources," Energy, Elsevier, vol. 215(PB).
    7. Peesapati, Rajagopal & Yadav, Vinod Kumar & Kumar, Niranjan, 2018. "Flower pollination algorithm based multi-objective congestion management considering optimal capacities of distributed generations," Energy, Elsevier, vol. 147(C), pages 980-994.
    8. Mei, Fei & Zhang, Jiatang & Lu, Jixiang & Lu, Jinjun & Jiang, Yuhan & Gu, Jiaqi & Yu, Kun & Gan, Lei, 2021. "Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations," Energy, Elsevier, vol. 219(C).
    9. Sultana, U. & Khairuddin, Azhar B. & Mokhtar, A.S. & Zareen, N. & Sultana, Beenish, 2016. "Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system," Energy, Elsevier, vol. 111(C), pages 525-536.
    10. Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    2. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    3. Mbungu, Nsilulu T. & Ismail, Ali A. & AlShabi, Mohammad & Bansal, Ramesh C. & Elnady, A. & Hamid, Abdul Kadir, 2023. "Control and estimation techniques applied to smart microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Luca Di Persio & Nicola Fraccarolo, 2023. "Investment and Bidding Strategies for Optimal Transmission Management Dynamics: The Italian Case," Energies, MDPI, vol. 16(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peesapati, Rajagopal & Yadav, Vinod Kumar & Kumar, Niranjan, 2018. "Flower pollination algorithm based multi-objective congestion management considering optimal capacities of distributed generations," Energy, Elsevier, vol. 147(C), pages 980-994.
    2. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    3. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    4. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    5. Das, Bikash & Mukherjee, V. & Das, Debapriya, 2019. "Optimum DG placement for known power injection from utility/substation by a novel zero bus load flow approach," Energy, Elsevier, vol. 175(C), pages 228-249.
    6. Mahesh Kumar & Perumal Nallagownden & Irraivan Elamvazuthi, 2017. "Optimal Placement and Sizing of Renewable Distributed Generations and Capacitor Banks into Radial Distribution Systems," Energies, MDPI, vol. 10(6), pages 1-25, June.
    7. Li, Yang & Feng, Bo & Wang, Bin & Sun, Shuchao, 2022. "Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach," Energy, Elsevier, vol. 245(C).
    8. Moradijoz, M. & Moghaddam, M. Parsa & Haghifam, M.R., 2018. "A flexible active distribution system expansion planning model: A risk-based approach," Energy, Elsevier, vol. 145(C), pages 442-457.
    9. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    10. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    11. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    12. Monteiro, Raul V.A. & Guimarães, Geraldo C. & Silva, Fernando Bento & da Silva Teixeira, Raoni F. & Carvalho, Bismarck C. & Finazzi, Antônio de P. & de Vasconcellos, Arnulfo B., 2018. "A medium-term analysis of the reduction in technical losses on distribution systems with variable demand using artificial neural networks: An Electrical Energy Storage approach," Energy, Elsevier, vol. 164(C), pages 1216-1228.
    13. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Mingshan Mo & Xinrui Xiong & Yunlong Wu & Zuyao Yu, 2023. "Deep-Reinforcement-Learning-Based Low-Carbon Economic Dispatch for Community-Integrated Energy System under Multiple Uncertainties," Energies, MDPI, vol. 16(22), pages 1-18, November.
    15. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    16. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    17. Das, Sangeeta & Das, Debapriya & Patra, Amit, 2019. "Operation of distribution network with optimal placement and sizing of dispatchable DGs and shunt capacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Ewaoche John Okampo & Nnamdi Nwulu & Pitshou N. Bokoro, 2022. "Optimal Placement and Operation of FACTS Technologies in a Cyber-Physical Power System: Critical Review and Future Outlook," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
    19. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    20. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.