IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923009765.html
   My bibliography  Save this article

Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation

Author

Listed:
  • Zhu, Xingxu
  • Hou, Xiangchen
  • Li, Junhui
  • Yan, Gangui
  • Li, Cuiping
  • Wang, Dongbo

Abstract

In this paper, a distributed online prediction optimization algorithm is proposed to optimize the operation of distributed energy resources (DERs) considering multi-period constraints. First, we build a time-varying operation optimization model of DERs in multi-area distribution networks considering the operation constraints among different periods (e.g., the relationship of DERs energy within a certain amount of time). Second, we design an online prediction algorithm to solve the time-varying model in a distributed way. Specifically, it decouples the sensitivities of power flow states among different distribution areas. Based on this, a model is set up to characterize the mapping relationship among power flow states and the increments of DER output powers among different periods, and to predict the power flow states in the future only depending on the local and some aggregated information of each area. Thus, the solution of the time-varying optimization problem is decomposed into solving several subproblems in a distributed way. Finally, the proposed algorithm is verified in a 502-node distribution system. It achieves the optimal operation of DERs with satisfying the constraints of the energy plan formulated to reserve enough energy for the regulation in future periods. Compared with the centralized method, the proposed algorithm achieves similar optimization results with significant reduction of calculation time.

Suggested Citation

  • Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009765
    DOI: 10.1016/j.apenergy.2023.121612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Ye & Tuan, Hoang Duong & Savkin, Andrey V. & Lin, Chin-Teng & Zhu, Jian Guo & Poor, H. Vincent, 2021. "Distributed model predictive control for joint coordination of demand response and optimal power flow with renewables in smart grid," Applied Energy, Elsevier, vol. 290(C).
    2. Xiang, Yue & Lu, Yu & Liu, Junyong, 2023. "Deep reinforcement learning based topology-aware voltage regulation of distribution networks with distributed energy storage," Applied Energy, Elsevier, vol. 332(C).
    3. Pinto, Rafael S. & Unsihuay-Vila, Clodomiro & Tabarro, Fabricio H., 2021. "Coordinated operation and expansion planning for multiple microgrids and active distribution networks under uncertainties," Applied Energy, Elsevier, vol. 297(C).
    4. Ma, Wei & Wang, Wei & Chen, Zhe & Wu, Xuezhi & Hu, Ruonan & Tang, Fen & Zhang, Weige, 2021. "Voltage regulation methods for active distribution networks considering the reactive power optimization of substations," Applied Energy, Elsevier, vol. 284(C).
    5. Wang, Xiaoxue & Wang, Chengshan & Xu, Tao & Meng, He & Li, Peng & Yu, Li, 2018. "Distributed voltage control for active distribution networks based on distribution phasor measurement units," Applied Energy, Elsevier, vol. 229(C), pages 804-813.
    6. Wu, Han & Yuan, Yue & Zhang, Xinsong & Miao, Ankang & Zhu, Junpeng, 2022. "Robust comprehensive PV hosting capacity assessment model for active distribution networks with spatiotemporal correlation," Applied Energy, Elsevier, vol. 323(C).
    7. Zhang, Zhaoyi & Shang, Lei & Liu, Chengxi & Lai, Qiupin & Jiang, Youjin, 2023. "Consensus-based distributed optimal power flow using gradient tracking technique for short-term power fluctuations," Energy, Elsevier, vol. 264(C).
    8. Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2021. "Double-layer stochastic model predictive voltage control in active distribution networks with high penetration of renewables," Applied Energy, Elsevier, vol. 302(C).
    9. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    10. Cao, Di & Zhao, Junbo & Hu, Weihao & Ding, Fei & Yu, Nanpeng & Huang, Qi & Chen, Zhe, 2022. "Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    2. Kang, Wenfa & Chen, Minyou & Guan, Yajuan & Wei, Baoze & Vasquez Q., Juan C. & Guerrero, Josep M., 2022. "Event-triggered distributed voltage regulation by heterogeneous BESS in low-voltage distribution networks," Applied Energy, Elsevier, vol. 312(C).
    3. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    4. Gao, Yuanqi & Yu, Nanpeng, 2022. "Model-augmented safe reinforcement learning for Volt-VAR control in power distribution networks," Applied Energy, Elsevier, vol. 313(C).
    5. Utama, Christian & Meske, Christian & Schneider, Johannes & Ulbrich, Carolin, 2022. "Reactive power control in photovoltaic systems through (explainable) artificial intelligence," Applied Energy, Elsevier, vol. 328(C).
    6. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    7. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    8. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    9. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    10. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    11. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    12. Zhu, Zheli & Guan, Guanghua & Wang, Kang, 2023. "Distributed model predictive control based on the alternating direction method of multipliers for branching open canal irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    13. Shi, Kaibo & Cai, Xiao & She, Kun & Zhong, Shouming & Soh, YengChai & Kwon, OhMin, 2022. "Quantized memory proportional–integral control of active power sharing and frequency regulation in island microgrid under abnormal cyber attacks," Applied Energy, Elsevier, vol. 322(C).
    14. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2023. "Determination of the Optimal Level of Reactive Power Compensation That Minimizes the Costs of Losses in Distribution Networks," Energies, MDPI, vol. 17(1), pages 1-24, December.
    15. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    16. Hu, Yusha & Man, Yi, 2022. "Two-stage energy scheduling optimization model for complex industrial process and its industrial verification," Renewable Energy, Elsevier, vol. 193(C), pages 879-894.
    17. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    18. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).
    19. Rabea Jamil Mahfoud & Nizar Faisal Alkayem & Emmanuel Fernandez-Rodriguez & Yuan Zheng & Yonghui Sun & Shida Zhang & Yuquan Zhang, 2024. "Evolutionary Approach for DISCO Profit Maximization by Optimal Planning of Distributed Generators and Energy Storage Systems in Active Distribution Networks," Mathematics, MDPI, vol. 12(2), pages 1-33, January.
    20. Nayak, Dhyaan Sandeep & Misra, Shamik, 2024. "An operational scheduling framework for Electric Vehicle Battery Swapping Station under demand uncertainty," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.