IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v314y2022ics0306261922002951.html
   My bibliography  Save this article

Real-time out-of-step prediction control to prevent emerging blackouts in power systems: A reinforcement learning approach

Author

Listed:
  • Hassani, Hossein
  • Razavi-Far, Roozbeh
  • Saif, Mehrdad

Abstract

Blackouts impose undesired economical impacts and integrity issues on electric power systems. Early out-of-step prediction of generating units is of paramount importance for blackout prevention and power management. This work is concerned with the design of novel real-time mechanisms based on reinforcement learning for the early out-of-step prediction in small-scale and large-scale power systems while mitigating the rate of false and miss alarms. These mechanisms are enabled by formulating the out-of-step prediction problem as a partially observable Markov decision process, for which a reward shaping strategy is devised based upon deep Q-networks to support the learning process of the agent. The proposed prediction mechanisms are real-time and capable of dealing with the dynamic changes of loads. Various scenarios in the form of three separate experiments are simulated on Kundur’s two-area and IEEE 39-bus systems. The attained results verify the effectiveness of the proposed mechanisms in early out-of-step prediction when the received observations by the agent are noisy and the active power of loads is subject to dynamical changes.

Suggested Citation

  • Hassani, Hossein & Razavi-Far, Roozbeh & Saif, Mehrdad, 2022. "Real-time out-of-step prediction control to prevent emerging blackouts in power systems: A reinforcement learning approach," Applied Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922002951
    DOI: 10.1016/j.apenergy.2022.118861
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922002951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trujillo, C.L. & Velasco, D. & Figueres, E. & Garcerá, G., 2010. "Analysis of active islanding detection methods for grid-connected microinverters for renewable energy processing," Applied Energy, Elsevier, vol. 87(11), pages 3591-3605, November.
    2. Dougier, Nathanael & Garambois, Pierre & Gomand, Julien & Roucoules, Lionel, 2021. "Multi-objective non-weighted optimization to explore new efficient design of electrical microgrids," Applied Energy, Elsevier, vol. 304(C).
    3. Veldhuis, Anton Johannes & Leach, Matthew & Yang, Aidong, 2018. "The impact of increased decentralised generation on the reliability of an existing electricity network," Applied Energy, Elsevier, vol. 215(C), pages 479-502.
    4. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    5. Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
    6. Zhang, Xiongfeng & Lu, Renzhi & Jiang, Junhui & Hong, Seung Ho & Song, Won Seok, 2021. "Testbed implementation of reinforcement learning-based demand response energy management system," Applied Energy, Elsevier, vol. 297(C).
    7. Kamali, Sadegh & Amraee, Turaj, 2017. "Blackout prediction in interconnected electric energy systems considering generation re-dispatch and energy curtailment," Applied Energy, Elsevier, vol. 187(C), pages 50-61.
    8. Sawwas, Ahmad & Chedid, Riad, 2021. "A pool-based energy market model for microgrids characterized by scheduled blackouts," Applied Energy, Elsevier, vol. 283(C).
    9. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions," Applied Energy, Elsevier, vol. 185(P1), pages 267-279.
    10. Wu, Jiajing & Fang, Biaoyan & Fang, Junyuan & Chen, Xi & Tse, Chi K., 2019. "Sequential topology recovery of complex power systems based on reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Jeong, Jaeik & Kim, Hongseok, 2021. "DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting," Applied Energy, Elsevier, vol. 294(C).
    12. Bouzid, Allal El Moubarek & Chaoui, Hicham & Zerrougui, Mohamed & Ben Elghali, Seifeddine & Benbouzid, Mohamed, 2021. "Robust control based on linear matrix inequalities criterion of single phase distributed electrical energy systems operating in islanded and grid-connected modes," Applied Energy, Elsevier, vol. 292(C).
    13. Biemann, Marco & Scheller, Fabian & Liu, Xiufeng & Huang, Lizhen, 2021. "Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control," Applied Energy, Elsevier, vol. 298(C).
    14. Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Shah, Ibrar Ali & Khan, Farrukh Aslam & Derhab, Abdelouahid, 2021. "A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid," Applied Energy, Elsevier, vol. 299(C).
    15. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerianne Lawson, 2022. "Electricity outages and residential fires: Evidence from Cape Town, South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 90(4), pages 469-485, December.
    2. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    3. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    4. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    5. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    6. Jose R. Vargas-Jaramillo & Jhon A. Montanez-Barrera & Michael R. von Spakovsky & Lamine Mili & Sergio Cano-Andrade, 2019. "Effects of Producer and Transmission Reliability on the Sustainability Assessment of Power System Networks," Energies, MDPI, vol. 12(3), pages 1-21, February.
    7. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    8. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    9. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    10. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    11. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    12. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    13. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    14. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    15. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    16. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    17. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    18. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    19. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    20. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922002951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.