IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.08809.html
   My bibliography  Save this paper

Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network

Author

Listed:
  • Xiaoyue Li
  • John M. Mulvey

Abstract

Optimal execution of a portfolio have been a challenging problem for institutional investors. Traders face the trade-off between average trading price and uncertainty, and traditional methods suffer from the curse of dimensionality. Here, we propose a four-step numerical framework for the optimal portfolio execution problem where multiple market regimes exist, with the underlying regime switching based on a Markov process. The market impact costs are modelled with a temporary part and a permanent part, where the former affects only the current trade while the latter persists. Our approach accepts impact cost functions in generic forms. First, we calculate the approximated orthogonal portfolios based on estimated impact cost functions; second, we employ dynamic program to learn the optimal selling schedule of each approximated orthogonal portfolio; third, weights of a neural network are pre-trained with the strategy suggested by previous step; last, we train the neural network to optimize on the original trading model. In our experiment of a 10-asset liquidation example with quadratic impact costs, the proposed combined method provides promising selling strategy for both CRRA (constant relative risk aversion) and mean-variance objectives. The running time is linear in the number of risky assets in the portfolio as well as in the number of trading periods. Possible improvements in running time are discussed for potential large-scale usages.

Suggested Citation

  • Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
  • Handle: RePEc:arx:papers:2306.08809
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.08809
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. �lvaro Cartea & Sebastian Jaimungal, 2015. "Optimal execution with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1279-1291, August.
    2. Takashi Kato, 2009. "An Optimal Execution Problem with Market Impact," Papers 0907.3282, arXiv.org, revised Dec 2014.
    3. Siu, Chi Chung & Guo, Ivan & Zhu, Song-Ping & Elliott, Robert J., 2019. "Optimal execution with regime-switching market resilience," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 17-40.
    4. Takashi Kato, 2014. "An optimal execution problem with market impact," Finance and Stochastics, Springer, vol. 18(3), pages 695-732, July.
    5. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    6. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    7. Richard Bellman, 1954. "Some Applications of the Theory of Dynamic Programming---A Review," Operations Research, INFORMS, vol. 2(3), pages 275-288, August.
    8. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2017. "Optimal execution with non-linear transient market impact," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 41-54, January.
    9. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    10. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    11. Richard Bellman, 1954. "On some applications of the theory of dynamic programming to logistics," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(2), pages 141-153, June.
    12. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    13. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    14. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    15. Takashi Kato, 2011. "An Optimal Execution Problem with a Geometric Ornstein-Uhlenbeck Price Process," Papers 1107.1787, arXiv.org, revised Jul 2014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Takashi Kato, 2017. "An Optimal Execution Problem with S-shaped Market Impact Functions," Papers 1706.09224, arXiv.org, revised Oct 2017.
    3. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    4. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-24, December.
    5. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A Mean Field Game of Portfolio Trading and Its Consequences On Perceived Correlations," Papers 1902.09606, arXiv.org.
    6. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    7. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    8. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," Papers 1502.04521, arXiv.org.
    9. Kensuke Ishitani & Takashi Kato, 2015. "Theoretical and Numerical Analysis of an Optimal Execution Problem with Uncertain Market Impact," Papers 1506.02789, arXiv.org, revised Aug 2015.
    10. Max O. Souza & Yuri Thamsten, 2021. "On regularized optimal execution problems and their singular limits," Papers 2101.02731, arXiv.org, revised Aug 2023.
    11. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    12. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    13. David Evangelista & Yuri Thamsten, 2023. "Approximately optimal trade execution strategies under fast mean-reversion," Papers 2307.07024, arXiv.org, revised Aug 2023.
    14. Lokka, A. & Xu, Junwei, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model," LSE Research Online Documents on Economics 106977, London School of Economics and Political Science, LSE Library.
    15. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    16. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    17. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    18. Takashi Kato, 2014. "VWAP Execution as an Optimal Strategy," Papers 1408.6118, arXiv.org, revised Jan 2017.
    19. Seungki Min & Costis Maglaras & Ciamac C. Moallemi, 2018. "Cross-Sectional Variation of Intraday Liquidity, Cross-Impact, and their Effect on Portfolio Execution," Papers 1811.05524, arXiv.org.
    20. Jan Kallsen & Johannes Muhle-Karbe, 2014. "High-Resilience Limits of Block-Shaped Order Books," Papers 1409.7269, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.08809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.