IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v328y2022ics0306261922012612.html
   My bibliography  Save this article

Reactive power control in photovoltaic systems through (explainable) artificial intelligence

Author

Listed:
  • Utama, Christian
  • Meske, Christian
  • Schneider, Johannes
  • Ulbrich, Carolin

Abstract

Across the world, efforts to support the energy transition and halt climate change have resulted in significant growth of the number of renewable distributed generators (DGs) installed over the last decade, among which photovoltaic (PV) systems are the fastest growing technology. However, high PV penetration in the electricity grid is known to lead to numerous operational problems such as voltage fluctuations and line congestions, which could be eased by utilizing the reactive power capability of PV systems. To this end, we propose to use artificial neural network (ANN) to predict optimal reactive power dispatch in PV systems by learning approximate input–output mappings from AC optimal power flow (ACOPF) solutions in either a centralized or a decentralized manner. In the case of decentralized control, we leverage Shapley Additive Explanations (SHAP), an explainable artificial intelligence (XAI) technique, to identify non-local grid state measurements which significantly influence the optimal dispatch of each individual system. Both centralized and decentralized ANN-based controllers are evaluated through a case study based on the CIGRE medium-voltage distribution grid and compared to baseline control strategies. Results show that both ANN-based controllers exhibit superior performance, hindering voltage problems and line congestions which are encountered with baseline strategies while recording an energy saving of 0.44% compared to fixed power factor control. By leveraging ANN and SHAP, the proposed decentralized controllers for reactive power control are able to achieve ACOPF-level performance while promoting data privacy and reducing computational burden.

Suggested Citation

  • Utama, Christian & Meske, Christian & Schneider, Johannes & Ulbrich, Carolin, 2022. "Reactive power control in photovoltaic systems through (explainable) artificial intelligence," Applied Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922012612
    DOI: 10.1016/j.apenergy.2022.120004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Ye & Tuan, Hoang Duong & Savkin, Andrey V. & Lin, Chin-Teng & Zhu, Jian Guo & Poor, H. Vincent, 2021. "Distributed model predictive control for joint coordination of demand response and optimal power flow with renewables in smart grid," Applied Energy, Elsevier, vol. 290(C).
    2. Anaya, Karim L. & Pollitt, Michael G., 2022. "A social cost benefit analysis for the procurement of reactive power: The case of Power Potential," Applied Energy, Elsevier, vol. 312(C).
    3. Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2021. "Double-layer stochastic model predictive voltage control in active distribution networks with high penetration of renewables," Applied Energy, Elsevier, vol. 302(C).
    4. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    5. Zhou, Yu & Li, Zhengshuo & Wang, Guangrui, 2021. "Study on leveraging wind farms' robust reactive power range for uncertain power system reactive power optimization," Applied Energy, Elsevier, vol. 298(C).
    6. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
    7. Haider, Rabab & Annaswamy, Anuradha M., 2022. "A hybrid architecture for volt-var control in active distribution grids," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    2. Luo, Haizhi & Wang, Chenglong & Li, Cangbai & Meng, Xiangzhao & Yang, Xiaohu & Tan, Qian, 2024. "Multi-scale carbon emission characterization and prediction based on land use and interpretable machine learning model: A case study of the Yangtze River Delta Region, China," Applied Energy, Elsevier, vol. 360(C).
    3. Bozhen Jiang & Qin Wang & Shengyu Wu & Yidi Wang & Gang Lu, 2024. "Advancements and Future Directions in the Application of Machine Learning to AC Optimal Power Flow: A Critical Review," Energies, MDPI, vol. 17(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
    2. Edward J. Smith & Duane A. Robinson & Sean Elphick, 2024. "DER Control and Management Strategies for Distribution Networks: A Review of Current Practices and Future Directions," Energies, MDPI, vol. 17(11), pages 1-40, May.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    5. Barik, Soumyabrata & Das, Debapriya, 2020. "A novel Q−PQV bus pair method of biomass DGs placement in distribution networks to maintain the voltage of remotely located buses," Energy, Elsevier, vol. 194(C).
    6. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Carbon emissions impacts of operational network constraints: The case of Spain during the Covid-19 crisis," Energy Economics, Elsevier, vol. 128(C).
    7. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
    8. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    9. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    10. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    11. Kabir, Farzana & Yu, Nanpeng & Gao, Yuanqi & Wang, Wenyu, 2023. "Deep reinforcement learning-based two-timescale Volt-VAR control with degradation-aware smart inverters in power distribution systems," Applied Energy, Elsevier, vol. 335(C).
    12. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    13. Wahyudi Sutopo & Ika Shinta Mardikaningsih & Roni Zakaria & Ahad Ali, 2020. "A Model to Improve the Implementation Standards of Street Lighting Based on Solar Energy: A Case Study," Energies, MDPI, vol. 13(3), pages 1-20, February.
    14. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    15. Zhu, Zheli & Guan, Guanghua & Wang, Kang, 2023. "Distributed model predictive control based on the alternating direction method of multipliers for branching open canal irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    16. Shi, Kaibo & Cai, Xiao & She, Kun & Zhong, Shouming & Soh, YengChai & Kwon, OhMin, 2022. "Quantized memory proportional–integral control of active power sharing and frequency regulation in island microgrid under abnormal cyber attacks," Applied Energy, Elsevier, vol. 322(C).
    17. Zhang, Ziqi & Li, Peng & Ji, Haoran & Zhao, Jinli & Xi, Wei & Wu, Jianzhong & Wang, Chengshan, 2024. "Combined central-local voltage control of inverter-based DG in active distribution networks11The short version of the paper was presented at CUE2023. This paper is a substantial extension of the short," Applied Energy, Elsevier, vol. 372(C).
    18. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    19. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    20. Simoes, Sofia & Zeyringer, Marianne & Mayr, Dieter & Huld, Thomas & Nijs, Wouter & Schmidt, Johannes, 2017. "Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria," Renewable Energy, Elsevier, vol. 105(C), pages 183-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922012612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.