IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp1383-1406.html
   My bibliography  Save this article

A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems

Author

Listed:
  • Zhang, Dongdong
  • Li, Chunjiao
  • Goh, Hui Hwang
  • Ahmad, Tanveer
  • Zhu, Hongyu
  • Liu, Hui
  • Wu, Thomas

Abstract

Cyber–physical systems (CPSs) are confronted with major problems, such as high proportions of renewable energy penetration and frequent extreme events, which severely restrict the stability of power systems. The key to solve these problems is the construction of a resilient power system. This study expounds on the development background and current situation of resilient CPSs from the perspectives of emerging technology and appropriate energy policy. Based on the foregoing, the importance of modeling in resilience research is highlighted, and the selection principles of different modeling methods are discussed. In addition, the optimal control strategies and methods applied to respond to extreme events in a three–stage power system are summarized, highlighting the application of optimal control strategies or emerging technologies for investigating simulations and actual systems. The study also focuses on the current development status of renewable energy and how variable renewable energy can reinforce power system resilience. Finally, in view of the gaps in the current CPS research, the key problems that must be resolved by future CPSs are identified.

Suggested Citation

  • Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1383-1406
    DOI: 10.1016/j.renene.2022.03.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122003809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molyneaux, Lynette & Brown, Colin & Wagner, Liam & Foster, John, 2016. "Measuring resilience in energy systems: Insights from a range of disciplines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1068-1079.
    2. Deng, Jingchuan & Li, Hongru & Hu, Jinxing & Liu, Zhenyu, 2021. "A new wind speed scenario generation method based on spatiotemporal dependency structure," Renewable Energy, Elsevier, vol. 163(C), pages 1951-1962.
    3. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    4. MansourLakouraj, Mohammad & Shahabi, Majid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal market-based operation of microgrid with the integration of wind turbines, energy storage system and demand response resources," Energy, Elsevier, vol. 239(PB).
    5. Cao, Wenzhi & Xiao, Jiang-Wen & Cui, Shi-Chang & Liu, Xiao-Kang, 2022. "An efficient and economical storage and energy sharing model for multiple multi-energy microgrids," Energy, Elsevier, vol. 244(PB).
    6. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    7. Sang, Maosheng & Ding, Yi & Bao, Minglei & Li, Siying & Ye, Chengjin & Fang, Youtong, 2021. "Resilience-based restoration strategy optimization for interdependent gas and power networks," Applied Energy, Elsevier, vol. 302(C).
    8. Zhang, Tong & Li, Zhigang & Wu, Q.H. & Zhou, Xiaoxin, 2019. "Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers," Applied Energy, Elsevier, vol. 248(C), pages 600-613.
    9. Fang Yao & Jiawei Wang & Fushuan Wen & Chung-Li Tseng & Xingyong Zhao & Qiang Wang, 2019. "An Integrated Planning Strategy for a Power Network and the Charging Infrastructure of Electric Vehicles for Power System Resilience Enhancement," Energies, MDPI, vol. 12(20), pages 1-20, October.
    10. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    11. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    12. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    13. Lee, J. & Razeghi, G. & Samuelsen, S., 2022. "Generic microgrid controller with self-healing capabilities," Applied Energy, Elsevier, vol. 308(C).
    14. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. Ran, Cuiling & Zhang, Yanzi & Yin, Ying, 2021. "Demand response to improve the shared electric vehicle planning: Managerial insights, sustainable benefits," Applied Energy, Elsevier, vol. 292(C).
    16. Takeshita, Takuma & Aki, Hirohisa & Kawajiri, Kotaro & Ishida, Masayoshi, 2021. "Assessment of utilization of combined heat and power systems to provide grid flexibility alongside variable renewable energy systems," Energy, Elsevier, vol. 214(C).
    17. Kosai, Shoki & Cravioto, Jordi, 2020. "Resilience of standalone hybrid renewable energy systems: The role of storage capacity," Energy, Elsevier, vol. 196(C).
    18. Tobajas, Javier & Garcia-Torres, Felix & Roncero-Sánchez, Pedro & Vázquez, Javier & Bellatreche, Ladjel & Nieto, Emilio, 2022. "Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control," Applied Energy, Elsevier, vol. 306(PB).
    19. Lee, Sangjun & Zhao, Jinhua, 2021. "Adaptation to climate change: Extreme events versus gradual changes," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    20. Haiyan Zhang & Minfang Peng & Josep M. Guerrero & Xingle Gao & Yanchen Liu, 2019. "Modelling and Vulnerability Analysis of Cyber-Physical Power Systems Based on Interdependent Networks," Energies, MDPI, vol. 12(18), pages 1-14, September.
    21. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    22. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    23. Xu, Luo & Guo, Qinglai & Sheng, Yujie & Muyeen, S.M. & Sun, Hongbin, 2021. "On the resilience of modern power systems: A comprehensive review from the cyber-physical perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    24. O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
    25. Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).
    26. Song, Zhaofang & Shi, Jing & Li, Shujian & Chen, Zexu & Jiao, Fengshun & Yang, Wangwang & Zhang, Zitong, 2022. "Data-driven and physical model-based evaluation method for the achievable demand response potential of residential consumers' air conditioning loads," Applied Energy, Elsevier, vol. 307(C).
    27. Jia Guo & Yuqi Han & Chuangxin Guo & Fengdan Lou & Yanbo Wang, 2017. "Modeling and Vulnerability Analysis of Cyber-Physical Power Systems Considering Network Topology and Power Flow Properties," Energies, MDPI, vol. 10(1), pages 1-21, January.
    28. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    29. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    30. Ian Durbach & Gilberto Montibeller, 2018. "Predicting in shock: on the impact of negative, extreme, rare, and short lived events on judgmental forecasts," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 213-233, June.
    31. David Ward, 2013. "The effect of weather on grid systems and the reliability of electricity supply," Climatic Change, Springer, vol. 121(1), pages 103-113, November.
    32. Ahmad, Fiaz & Rasool, Akhtar & Ozsoy, Emre & Sekar, Raja & Sabanovic, Asif & Elitaş, Meltem, 2018. "Distribution system state estimation-A step towards smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2659-2671.
    33. Murphy, Sinnott & Sowell, Fallaw & Apt, Jay, 2019. "A time-dependent model of generator failures and recoveries captures correlated events and quantifies temperature dependence," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    34. Mansour-lakouraj, Mohammad & Shahabi, Majid, 2019. "Comprehensive analysis of risk-based energy management for dependent micro-grid under normal and emergency operations," Energy, Elsevier, vol. 171(C), pages 928-943.
    35. Lai, Qiupin & Liu, Chengxi & Sun, Kai, 2021. "Vulnerability assessment for voltage stability based on solvability regions of decoupled power flow equations," Applied Energy, Elsevier, vol. 304(C).
    36. Marqusee, Jeffrey & Jenket, Donald, 2020. "Reliability of emergency and standby diesel generators: Impact on energy resiliency solutions," Applied Energy, Elsevier, vol. 268(C).
    37. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    38. Ghasemi, Sasan & Moshtagh, Jamal, 2022. "Distribution system restoration after extreme events considering distributed generators and static energy storage systems with mobile energy storage systems dispatch in transportation systems," Applied Energy, Elsevier, vol. 310(C).
    39. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    40. Morato, Marcelo M. & Vergara-Dietrich, José & Esparcia, Eugene A. & Ocon, Joey D. & Normey-Rico, Julio E., 2021. "Assessing demand compliance and reliability in the Philippine off-grid islands with Model Predictive Control microgrid coordination," Renewable Energy, Elsevier, vol. 179(C), pages 1271-1290.
    41. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    42. A. Rahman, Hasimah & Majid, Md. Shah & Rezaee Jordehi, A. & Chin Kim, Gan & Hassan, Mohammad Yusri & O. Fadhl, Saeed, 2015. "Operation and control strategies of integrated distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1412-1420.
    43. Hashemi, M.Reza & Kresning, Boma & Hashemi, Javad & Ginis, Isaac, 2021. "Assessment of hurricane generated loads on offshore wind farms; a closer look at most extreme historical hurricanes in New England," Renewable Energy, Elsevier, vol. 175(C), pages 593-609.
    44. Nelson, James & Johnson, Nathan G. & Fahy, Kelsey & Hansen, Timothy A., 2020. "Statistical development of microgrid resilience during islanding operations," Applied Energy, Elsevier, vol. 279(C).
    45. Wang, Yi & Rousis, Anastasios Oulis & Strbac, Goran, 2020. "On microgrids and resilience: A comprehensive review on modeling and operational strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    46. Xiaoqing Hu & Beibei Wang & Shengchun Yang & Taylor Short & Lei Zhou, 2015. "A Closed-Loop Control Strategy for Air Conditioning Loads to Participate in Demand Response," Energies, MDPI, vol. 8(8), pages 1-32, August.
    47. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    48. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    49. Ding, Tao & Lin, Yanling & Bie, Zhaohong & Chen, Chen, 2017. "A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration," Applied Energy, Elsevier, vol. 199(C), pages 205-216.
    50. Wang, Fei & Xu, Hanchen & Xu, Ti & Li, Kangping & Shafie-khah, Miadreza & Catalão, João. P.S., 2017. "The values of market-based demand response on improving power system reliability under extreme circumstances," Applied Energy, Elsevier, vol. 193(C), pages 220-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arif Fikri Malek & Hazlie Mokhlis & Nurulafiqah Nadzirah Mansor & Jasrul Jamani Jamian & Li Wang & Munir Azam Muhammad, 2023. "Power Distribution System Outage Management Using Improved Resilience Metrics for Smart Grid Applications," Energies, MDPI, vol. 16(9), pages 1-21, May.
    2. Zhang, Heng & Zhang, Shenxi & Cheng, Haozhong & Li, Zheng & Gu, Qingfa & Tian, Xueqin, 2022. "Boosting the power grid resilience under typhoon disasters by coordinated scheduling of wind energy and conventional generators," Renewable Energy, Elsevier, vol. 200(C), pages 303-319.
    3. Zhao, Shihao & Li, Kang & Yin, Mingjia & Yu, James & Yang, Zhile & Li, Yihuan, 2024. "Transportable energy storage assisted post-disaster restoration of distribution networks with renewable generations," Energy, Elsevier, vol. 295(C).
    4. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    5. Agrippina Mwangi & Rishikesh Sahay & Elena Fumagalli & Mikkel Gryning & Madeleine Gibescu, 2024. "Towards a Software-Defined Industrial IoT-Edge Network for Next-Generation Offshore Wind Farms: State of the Art, Resilience, and Self-X Network and Service Management," Energies, MDPI, vol. 17(12), pages 1-31, June.
    6. Dongdong Zhang & Jun Tian & Hui-Hwang Goh & Hui Liu & Xiang Li & Hongyu Zhu & Xinzhang Wu, 2022. "The Key Technology of Smart Energy System and Its Disciplinary Teaching Reform Measures," Sustainability, MDPI, vol. 14(21), pages 1-29, October.
    7. Mahvash, Hossein & Taher, Seyed Abbas & Guerrero, Josep M., 2024. "Mitigation of severe false data injection attacks (FDIAs) in marine current turbine (MCT) type 4 synchronous generator renewable energy using promoted backstepping method," Renewable Energy, Elsevier, vol. 222(C).
    8. Liu, Yanli & Feng, Haonan & Hatziargyriou, Nikos D., 2023. "Multi-stage collaborative resilient enhancement strategy for coupling faults in distribution cyber physical systems," Applied Energy, Elsevier, vol. 348(C).
    9. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    10. Emanuele Ciapessoni & Diego Cirio & Andrea Pitto, 2024. "An Efficient Methodology to Identify Relevant Multiple Contingencies and Their Probability for Long-Term Resilience Studies," Energies, MDPI, vol. 17(9), pages 1-20, April.
    11. Min Wu & Wuhua Chen & Xiaohong Tian, 2022. "Optimal Energy Consumption Path Planning for Quadrotor UAV Transmission Tower Inspection Based on Simulated Annealing Algorithm," Energies, MDPI, vol. 15(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Xu, Luo & Guo, Qinglai & Sheng, Yujie & Muyeen, S.M. & Sun, Hongbin, 2021. "On the resilience of modern power systems: A comprehensive review from the cyber-physical perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Li, Xue & Du, Xiaoxue & Jiang, Tao & Zhang, Rufeng & Chen, Houhe, 2022. "Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events," Applied Energy, Elsevier, vol. 309(C).
    9. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    10. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    11. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    12. Su, Rui & Chen, Bin & Wang, Saige & Duan, Cuncun, 2024. "Energy technical resilience assessment based on complex network analysis – A case study of China," Applied Energy, Elsevier, vol. 364(C).
    13. Wang, Chong & Ju, Ping & Wu, Feng & Lei, Shunbo & Pan, Xueping, 2021. "Sequential steady-state security region-based transmission power system resilience enhancement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    15. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N. & Burmester, Daniel, 2021. "Strategic design optimisation of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market for demand response aggregation," Applied Energy, Elsevier, vol. 287(C).
    16. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Zhang, Xi & Tu, Haicheng & Guo, Jianbo & Ma, Shicong & Li, Zhen & Xia, Yongxiang & Tse, Chi Kong, 2021. "Braess paradox and double-loop optimization method to enhance power grid resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Mimica, Marko & Dominković, Dominik Franjo & Capuder, Tomislav & Krajačić, Goran, 2021. "On the value and potential of demand response in the smart island archipelago," Renewable Energy, Elsevier, vol. 176(C), pages 153-168.
    19. Qiu, Dawei & Wang, Yi & Zhang, Tingqi & Sun, Mingyang & Strbac, Goran, 2023. "Hierarchical multi-agent reinforcement learning for repair crews dispatch control towards multi-energy microgrid resilience," Applied Energy, Elsevier, vol. 336(C).
    20. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1383-1406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.