Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.117982
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Howlader, Abdul Motin & Sadoyama, Staci & Roose, Leon R. & Chen, Yan, 2020. "Active power control to mitigate voltage and frequency deviations for the smart grid using smart PV inverters," Applied Energy, Elsevier, vol. 258(C).
- Wang, Licheng & Yan, Ruifeng & Saha, Tapan Kumar, 2019. "Voltage regulation challenges with unbalanced PV integration in low voltage distribution systems and the corresponding solution," Applied Energy, Elsevier, vol. 256(C).
- Jin-Xin Ou-Yang & Xiao-Xuan Long & Xue Du & Yan-Bo Diao & Meng-Yang Li, 2019. "Voltage Control Method for Active Distribution Networks Based on Regional Power Coordination," Energies, MDPI, vol. 12(22), pages 1-23, November.
- Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qingyan Li & Tao Lin & Qianyi Yu & Hui Du & Jun Li & Xiyue Fu, 2023. "Review of Deep Reinforcement Learning and Its Application in Modern Renewable Power System Control," Energies, MDPI, vol. 16(10), pages 1-23, May.
- Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue, 2024. "Risk-based distributionally robust optimal dispatch for multiple cascading failures in regional integrated energy system using surrogate modeling," Applied Energy, Elsevier, vol. 353(PA).
- Yuan, Quan & Ye, Yujian & Tang, Yi & Liu, Yuanchang & Strbac, Goran, 2022. "A novel deep-learning based surrogate modeling of stochastic electric vehicle traffic user equilibrium in low-carbon electricity–transportation nexus," Applied Energy, Elsevier, vol. 315(C).
- Zhang, Bin & Hu, Weihao & Xu, Xiao & Li, Tao & Zhang, Zhenyuan & Chen, Zhe, 2022. "Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 433-448.
- Jude Suchithra & Duane A. Robinson & Amin Rajabi, 2024. "A Model-Free Deep Reinforcement Learning-Based Approach for Assessment of Real-Time PV Hosting Capacity," Energies, MDPI, vol. 17(9), pages 1-12, April.
- Guo, Guodong & Zhang, Mengfan & Gong, Yanfeng & Xu, Qianwen, 2023. "Safe multi-agent deep reinforcement learning for real-time decentralized control of inverter based renewable energy resources considering communication delay," Applied Energy, Elsevier, vol. 349(C).
- Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
- Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
- Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
- Gao, Yuanqi & Yu, Nanpeng, 2022. "Model-augmented safe reinforcement learning for Volt-VAR control in power distribution networks," Applied Energy, Elsevier, vol. 313(C).
- Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
- Zhang, Xiao & Wu, Zhi & Sun, Qirun & Gu, Wei & Zheng, Shu & Zhao, Jingtao, 2024. "Application and progress of artificial intelligence technology in the field of distribution network voltage Control:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
- Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
- Ma, Wei & Wang, Wei & Chen, Zhe & Wu, Xuezhi & Hu, Ruonan & Tang, Fen & Zhang, Weige, 2021. "Voltage regulation methods for active distribution networks considering the reactive power optimization of substations," Applied Energy, Elsevier, vol. 284(C).
- Maharjan, Salish & Sampath Kumar, Dhivya & Khambadkone, Ashwin M., 2020. "Enhancing the voltage stability of distribution network during PV ramping conditions with variable speed drive loads," Applied Energy, Elsevier, vol. 264(C).
- Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
- Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
- Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
- Wasiak, Irena & Szypowski, Michał & Kelm, Paweł & Mieński, Rozmysław & Wędzik, Andrzej & Pawełek, Ryszard & Małaczek, Michał & Urbanek, Przemysław, 2022. "Innovative energy management system for low-voltage networks with distributed generation based on prosumers’ active participation," Applied Energy, Elsevier, vol. 312(C).
- Yu Zhang & Xiaohui Song & Yong Li & Zilong Zeng & Chenchen Yong & Denis Sidorov & Xia Lv, 2020. "Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility," Energies, MDPI, vol. 13(22), pages 1-13, November.
- Ibrahim Salem Jahan & Vojtech Blazek & Stanislav Misak & Vaclav Snasel & Lukas Prokop, 2022. "Forecasting of Power Quality Parameters Based on Meteorological Data in Small-Scale Household Off-Grid Systems," Energies, MDPI, vol. 15(14), pages 1-20, July.
- Marten Fesefeldt & Massimiliano Capezzali & Mokhtar Bozorg & Riina Karjalainen, 2023. "Impact of Heat Pump and Cogeneration Integration on Power Distribution Grids Based on Transition Scenarios for Heating in Urban Areas," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
- Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
- Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
- Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).
- Zedequias Machado Alves & Renata Mota Martins & Gustavo Marchesan & Ghendy Cardoso Junior, 2022. "Metaheuristic for the Allocation and Sizing of PV-STATCOMs for Ancillary Service Provision," Energies, MDPI, vol. 16(1), pages 1-16, December.
- Gregorio Fernández & Alejandro Martínez & Noemí Galán & Javier Ballestín-Fuertes & Jesús Muñoz-Cruzado-Alba & Pablo López & Simon Stukelj & Eleni Daridou & Alessio Rezzonico & Dimosthenis Ioannidis, 2021. "Optimal D-STATCOM Placement Tool for Low Voltage Grids," Energies, MDPI, vol. 14(14), pages 1-31, July.
- Ferreira, Willian M. & Meneghini, Ivan R. & Brandao, Danilo I. & Guimarães, Frederico G., 2020. "Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 274(C).
- Qu, Guanghao & Li, Shengtao, 2023. "Atomic mechanisms of long-term pyrolysis and gas production in cellulose-oil composite for transformer insulation," Applied Energy, Elsevier, vol. 350(C).
- Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
- Song, Shaojian & Xiong, Hao & Lin, Yuzhang & Huang, Manyun & Wei, Zhinong & Fang, Zhi, 2022. "Robust three-phase state estimation for PV-Integrated unbalanced distribution systems," Applied Energy, Elsevier, vol. 322(C).
- Anna Ostrowska & Łukasz Michalec & Marek Skarupski & Michał Jasiński & Tomasz Sikorski & Paweł Kostyła & Robert Lis & Grzegorz Mudrak & Tomasz Rodziewicz, 2022. "Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions," Energies, MDPI, vol. 15(21), pages 1-26, October.
More about this item
Keywords
Voltage regulation; Active distribution network; Model-free; Deep reinforcement learning; Solar PVs; Optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pa:s030626192101285x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.