IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipbs0306261921013982.html
   My bibliography  Save this article

Forecasting-aided state estimation based on deep learning for hybrid AC/DC distribution systems

Author

Listed:
  • Huang, Manyun
  • Wei, Zhinong
  • Lin, Yuzhang

Abstract

To accommodate a higher penetration of distributed energy resources, distribution systems are moving toward hybrid AC/DC configurations for secure and economic operation. In this regard, this paper proposes a forecasting-aided state estimator (FASE) for hybrid AC/DC distribution systems to obtain accurate estimates for online security monitoring and control. The proposed FASE is designed in a distributed framework, with decomposition into several subproblems and solution by a constrained ensemble Kalman filter algorithm. In the proposed methodology, a deep neural network-based state forecasting model is developed to imitate the complex temporal and spatial relationship between system states, avoiding the state transition model built by unfounded explicit formulations. Furthermore, smart meter data is integrated by deep regression learning to obtain power injections of consumers and address the system observability issue. Extensive comparisons with two alternatives are carried out on a sample 33-node hybrid AC/DC distribution system to show the effectiveness and benefits of the proposed FASE, and on a larger 106-node hybrid AC/DC distribution system to demonstrate scalability.

Suggested Citation

  • Huang, Manyun & Wei, Zhinong & Lin, Yuzhang, 2022. "Forecasting-aided state estimation based on deep learning for hybrid AC/DC distribution systems," Applied Energy, Elsevier, vol. 306(PB).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013982
    DOI: 10.1016/j.apenergy.2021.118119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921013982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Zhi & Liu, Pengxiang & Gu, Wei & Huang, He & Han, Jun, 2018. "A bi-level planning approach for hybrid AC-DC distribution system considering N-1 security criterion," Applied Energy, Elsevier, vol. 230(C), pages 417-428.
    2. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    3. Zhang, Tong & Li, Zhigang & Wu, Q.H. & Zhou, Xiaoxin, 2019. "Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers," Applied Energy, Elsevier, vol. 248(C), pages 600-613.
    4. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2016. "State estimation of medium voltage distribution networks using smart meter measurements," Applied Energy, Elsevier, vol. 184(C), pages 207-218.
    5. Ghadikolaee, Ebad Talebi & Kazemi, Ahad & Shayanfar, Heydar Ali, 2020. "Novel multi-objective phasor measurement unit placement for improved parallel state estimation in distribution network," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    2. Song, Shaojian & Xiong, Hao & Lin, Yuzhang & Huang, Manyun & Wei, Zhinong & Fang, Zhi, 2022. "Robust three-phase state estimation for PV-Integrated unbalanced distribution systems," Applied Energy, Elsevier, vol. 322(C).
    3. Dong Yu & Shan Gao & Xin Zhao & Yu Liu & Sicheng Wang & Tiancheng E. Song, 2023. "Alternating Iterative Power-Flow Algorithm for Hybrid AC–DC Power Grids Incorporating LCCs and VSCs," Sustainability, MDPI, vol. 15(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    2. Song, Shaojian & Xiong, Hao & Lin, Yuzhang & Huang, Manyun & Wei, Zhinong & Fang, Zhi, 2022. "Robust three-phase state estimation for PV-Integrated unbalanced distribution systems," Applied Energy, Elsevier, vol. 322(C).
    3. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    4. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
    5. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
    6. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    8. Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
    9. Lai, Qingzhi & Ahn, Hyoung Jun & Kim, YoungJin & Kim, You Na & Lin, Xinfan, 2021. "New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery," Applied Energy, Elsevier, vol. 295(C).
    10. Grzegorz Dudek, 2022. "A Comprehensive Study of Random Forest for Short-Term Load Forecasting," Energies, MDPI, vol. 15(20), pages 1-19, October.
    11. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    12. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    13. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    14. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    15. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    16. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    17. Thapelo Mosetlhe & Adedayo Ademola Yusuff, 2024. "Forecasting of Residential Energy Utilisation Based on Regression Machine Learning Schemes," Energies, MDPI, vol. 17(18), pages 1-9, September.
    18. Sovacool, Benjamin K. & Kivimaa, Paula & Hielscher, Sabine & Jenkins, Kirsten, 2017. "Vulnerability and resistance in the United Kingdom's smart meter transition," Energy Policy, Elsevier, vol. 109(C), pages 767-781.
    19. Guangdi Li & Qi Tang & Bo Hu & Min Ma, 2022. "Optimal Scheduling of Thermoelectric Coupling Energy System Considering Thermal Characteristics of DHN," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    20. Pinto, Rafael S. & Unsihuay-Vila, Clodomiro & Tabarro, Fabricio H., 2021. "Coordinated operation and expansion planning for multiple microgrids and active distribution networks under uncertainties," Applied Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.