IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v317y2022ics0306261922005359.html
   My bibliography  Save this article

Lightweight actor-critic generative adversarial networks for real-time smart generation control of microgrids

Author

Listed:
  • Han, Kunlun
  • Yang, Kai
  • Yin, Linfei

Abstract

Large-scale introduction of new energy could effectively alleviate energy shortage and environmental pollution. However, the uncertainty of wind and solar energy brings serious random disturbance problems to microgrids. This paper proposes lightweight actor-critic generative adversarial networks based on ensemble empirical mode decomposition and evolutionary strategy for increasing the robustness and adaptability of microgrids. Firstly, to improve the training speed and stability of generative adversarial networks, the complex power data is properly decomposed into more regular and simpler sub-data by the ensemble empirical mode decomposition; the generative adversarial networks are optimized by the evolutionary strategy with a set of different loss functions. Secondly, fully connecting the generative adversarial networks with the actor-critic framework, the lightweight actor-critic generative adversarial networks can realize dynamic learning in the random environment and store the sample for online training by the empirical replay mechanism. Thirdly, the multi-path lightweight method is proposed to reduce the consumption of time and storage resources of lightweight actor-critic generative adversarial networks. Eventually, the lightweight actor-critic generative adversarial networks are compared with comparison algorithms in two-area and real-life four-area systems. Case study results reveal that lightweight actor-critic generative adversarial networks have better dynamic performance, online learning capabilities, and higher control performance with lower economic costs.

Suggested Citation

  • Han, Kunlun & Yang, Kai & Yin, Linfei, 2022. "Lightweight actor-critic generative adversarial networks for real-time smart generation control of microgrids," Applied Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005359
    DOI: 10.1016/j.apenergy.2022.119163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
    2. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Çetin, Gürcan & Özkaraca, Osman & Keçebaş, Ali, 2021. "Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Ding, Yong & Mao, Meiqin & Chang, Liuchen, 2021. "Conservative power theory and its applications in modern smart grid: Review and prospect," Applied Energy, Elsevier, vol. 303(C).
    5. Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
    6. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Wu, Huijun & Gao, Mengping, 2021. "Sharing hydropower flexibility in interconnected power systems: A case study for the China Southern power grid," Applied Energy, Elsevier, vol. 288(C).
    7. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    8. Xi, Lei & Chen, Jianfeng & Huang, Yuehua & Xu, Yanchun & Liu, Lang & Zhou, Yimin & Li, Yudan, 2018. "Smart generation control based on multi-agent reinforcement learning with the idea of the time tunnel," Energy, Elsevier, vol. 153(C), pages 977-987.
    9. Matamala, Yolanda & Feijoo, Felipe, 2021. "A two-stage stochastic Stackelberg model for microgrid operation with chance constraints for renewable energy generation uncertainty," Applied Energy, Elsevier, vol. 303(C).
    10. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    11. Ding, Yunfei & Chen, Zijun & Zhang, Hongwei & Wang, Xin & Guo, Ying, 2022. "A short-term wind power prediction model based on CEEMD and WOA-KELM," Renewable Energy, Elsevier, vol. 189(C), pages 188-198.
    12. Juncheng Wang & Bin Zou & Mingfang Liu & Yishang Li & Hongjian Ding & Kai Xue, 2021. "Milling force prediction model based on transfer learning and neural network," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 947-956, April.
    13. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Yin, Linfei & Wang, Tao & Wang, Senlin & Zheng, Baomin, 2019. "Interchange objective value method for distributed multi-objective optimization: Theory, application, implementation," Applied Energy, Elsevier, vol. 239(C), pages 1066-1076.
    15. Wanyou Lv & Jiawen Xiong & Jianqi Shi & Yanhong Huang & Shengchao Qin, 2021. "A deep convolution generative adversarial networks based fuzzing framework for industry control protocols," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 441-457, February.
    16. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    17. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    18. Abida Sharif & Jian Ping Li & Muhammad Asim Saleem & Gunasekaran Manogran & Seifedine Kadry & Abdul Basit & Muhammad Attique Khan, 2021. "A dynamic clustering technique based on deep reinforcement learning for Internet of vehicles," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 757-768, March.
    19. Li, Hao & Misra, Siddharth, 2021. "Reinforcement learning based automated history matching for improved hydrocarbon production forecast," Applied Energy, Elsevier, vol. 284(C).
    20. Li, Jiawen & Yu, Tao & Zhang, Xiaoshun, 2022. "Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhiqiang & Li, Jianbin & Cheng, Long & Liu, Xiufeng, 2023. "Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation," Applied Energy, Elsevier, vol. 334(C).
    2. Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
    3. Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).
    4. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    5. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    6. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2023. "Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey," Energies, MDPI, vol. 16(4), pages 1-38, February.
    7. Yin, Linfei & Zheng, Da, 2024. "Decomposition prediction fractional-order PID reinforcement learning for short-term smart generation control of integrated energy systems," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Linfei & Zheng, Da, 2024. "Decomposition prediction fractional-order PID reinforcement learning for short-term smart generation control of integrated energy systems," Applied Energy, Elsevier, vol. 355(C).
    2. Yin, Linfei & Li, Yu, 2022. "Hybrid multi-agent emotional deep Q network for generation control of multi-area integrated energy systems," Applied Energy, Elsevier, vol. 324(C).
    3. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    4. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    5. Gao, Fang & Xu, Zidong & Yin, Linfei, 2024. "Bayesian deep neural networks for spatio-temporal probabilistic optimal power flow with multi-source renewable energy," Applied Energy, Elsevier, vol. 353(PA).
    6. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    7. Yin, Linfei & Wu, Yunzhi, 2022. "Mode-decomposition memory reinforcement network strategy for smart generation control in multi-area power systems containing renewable energy," Applied Energy, Elsevier, vol. 307(C).
    8. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 318(C).
    9. Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
    10. Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
    11. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
    13. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    14. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    15. Aniket Nagargoje & Pavan Kumar Kankar & Prashant Kumar Jain & Puneet Tandon, 2023. "Application of artificial intelligence techniques in incremental forming: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 985-1002, March.
    16. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    17. Russeil, Valentin & Lo Seen, Danny & Broust, François & Bonin, Muriel & Praene, Jean-Philippe, 2023. "Food and electricity self-sufficiency trade-offs in Reunion Island: Modelling land-use change scenarios with stakeholders," Land Use Policy, Elsevier, vol. 132(C).
    18. Li, Yanxue & Wang, Zixuan & Xu, Wenya & Gao, Weijun & Xu, Yang & Xiao, Fu, 2023. "Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning," Energy, Elsevier, vol. 277(C).
    19. Hang Yin & Zeyu Wu & Junchao Wu & Junjie Jiang & Yalin Chen & Mingxuan Chen & Shixuan Luo & Lijun Gao, 2023. "A Hybrid Medium and Long-Term Relative Humidity Point and Interval Prediction Method for Intensive Poultry Farming," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    20. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.