IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp907-915.html
   My bibliography  Save this article

Coordinated voltage control in unbalanced distribution networks with two-stage distributionally robust chance-constrained receding horizon control

Author

Listed:
  • Zhang, Zhengfa
  • da Silva, Filipe Faria
  • Guo, Yifei
  • Bak, Claus Leth
  • Chen, Zhe

Abstract

The integration of increasing share of renewable based distributed generation in distribution networks brings great challenges to voltage control. To address this issue, this paper presents a two-stage distributionally robust chance-constrained receding horizon control algorithm. In the proposed method, the distributionally robust chance-constrained reformulation of chance-constrained voltage control is derived, which is not only accurate, but also computationally efficient. Rather than perfect knowledge about the uncertainty associated with renewable generation, the proposed method only requires partial information of the underlying probability distribution. In addition, the mechanical voltage regulation devices and the DG inverters are controlled in two stages, considering their different characteristics in voltage control. By taking into account both the current and forecasted renewable generation, the proposed method utilizes receding horizon control to determine the control actions of voltage regulation devices. The effectiveness of the proposed method is demonstrated by case studies on unbalanced IEEE-123 bus system.

Suggested Citation

  • Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2022. "Coordinated voltage control in unbalanced distribution networks with two-stage distributionally robust chance-constrained receding horizon control," Renewable Energy, Elsevier, vol. 198(C), pages 907-915.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:907-915
    DOI: 10.1016/j.renene.2022.08.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferdowsi, Farzad & Mehraeen, Shahab & Upton, Gregory B., 2020. "Assessing distribution network sensitivity to voltage rise and flicker under high penetration of behind-the-meter solar," Renewable Energy, Elsevier, vol. 152(C), pages 1227-1240.
    2. Howlader, Abdul Motin & Sadoyama, Staci & Roose, Leon R. & Sepasi, Saeed, 2018. "Distributed voltage regulation using Volt-Var controls of a smart PV inverter in a smart grid: An experimental study," Renewable Energy, Elsevier, vol. 127(C), pages 145-157.
    3. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    4. Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
    5. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    6. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    7. Sadeghian, Hamidreza & Wang, Zhifang, 2020. "A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks," Renewable Energy, Elsevier, vol. 147(P1), pages 2179-2194.
    8. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    2. Fangfang Zheng & Xiaofang Meng & Tiefeng Xu & Yongchang Sun & Nannan Zhang, 2023. "Voltage Zoning Regulation Method of Distribution Network with High Proportion of Photovoltaic Considering Energy Storage Configuration," Sustainability, MDPI, vol. 15(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    2. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    3. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    4. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    5. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    6. Arthur Flajolet & Sébastien Blandin & Patrick Jaillet, 2018. "Robust Adaptive Routing Under Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 210-229, January.
    7. Ebenezer Fiifi Emire Atta Mills & Bo Yu & Kailin Zeng, 2019. "Satisfying Bank Capital Requirements: A Robustness Approach in a Modified Roy Safety-First Framework," Mathematics, MDPI, vol. 7(7), pages 1-20, July.
    8. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Other publications TiSEM d718e419-a375-4707-b206-e, Tilburg University, School of Economics and Management.
    9. Lu, Mengshi & Nakao, Hideaki & Shen, Siqian & Zhao, Lin, 2021. "Non-profit resource allocation and service scheduling with cross-subsidization and uncertain resource consumptions," Omega, Elsevier, vol. 99(C).
    10. Huan Xu & Shie Mannor, 2012. "Distributionally Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 288-300, May.
    11. Zheng Zhang & Brian T. Denton & Xiaolan Xie, 2020. "Branch and Price for Chance-Constrained Bin Packing," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 547-564, July.
    12. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment," Renewable Energy, Elsevier, vol. 173(C), pages 972-986.
    13. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    14. Liu, Ming & Liu, Xin & Chu, Feng & Zheng, Feifeng & Chu, Chengbin, 2019. "Distributionally robust inventory routing problem to maximize the service level under limited budget," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 190-211.
    15. Guanglin Xu & Samuel Burer, 2018. "A data-driven distributionally robust bound on the expected optimal value of uncertain mixed 0-1 linear programming," Computational Management Science, Springer, vol. 15(1), pages 111-134, January.
    16. Zhiping Chen & Shen Peng & Abdel Lisser, 2020. "A sparse chance constrained portfolio selection model with multiple constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 825-852, August.
    17. Daiva Stanelytė & Virginijus Radziukynas, 2022. "Analysis of Voltage and Reactive Power Algorithms in Low Voltage Networks," Energies, MDPI, vol. 15(5), pages 1-26, March.
    18. Dawen Yan & Xiaohui Zhang & Mingzheng Wang, 2021. "A robust bank asset allocation model integrating credit-rating migration risk and capital adequacy ratio regulations," Annals of Operations Research, Springer, vol. 299(1), pages 659-710, April.
    19. Vergara, Pedro P. & Salazar, Mauricio & Mai, Tam T. & Nguyen, Phuong H. & Slootweg, Han, 2020. "A comprehensive assessment of PV inverters operating with droop control for overvoltage mitigation in LV distribution networks," Renewable Energy, Elsevier, vol. 159(C), pages 172-183.
    20. Zhiping Chen & Shen Peng & Jia Liu, 2018. "Data-Driven Robust Chance Constrained Problems: A Mixture Model Approach," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 1065-1085, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:907-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.