IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp924-939.html
   My bibliography  Save this article

Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays

Author

Listed:
  • Wang, Zeyu
  • Diao, Yanhua
  • Zhao, Yaohua
  • Wang, Tengyue
  • Liang, Lin
  • Chi, Yuying

Abstract

This article presents an integrated collector–storage solar air heater (ICSSAH) based on lap joint-type (LJT) flat micro-heat pipe arrays (FMHPA) and latent thermal storage (LTS). FMHPA for thermal collection and for thermal storage/release were separated and overlapped. The discharging process is not affected by the length of the collection segment. Approximately 21.03 kg of 52# industry paraffin wax was utilized as thermal storage material (TSM) to store solar energy, and the collection area was set to 1.03 m2. The influence of environmental factors on the charging process and the effects of heat transfer fluid's parameters on the discharging process were studied. An average efficiency curve was proposed according to the analysis of experimental data to evaluate thermal storage performance during charging, and a correlation between Re and Nu was fitted to predict the convective heat transfer coefficient during the discharging of the device. LJT-FMHPA-ICSSAH exhibits good thermal characteristics during experimental conditions. The thermal storage/extraction efficiency reached 73.8%/97.1%, and the average thermal storage/extraction power reached 623.7 W/815.9 W.

Suggested Citation

  • Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:924-939
    DOI: 10.1016/j.energy.2018.07.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fath, Hassan E.S., 1995. "Thermal performance of a simple design solar air heater with built-in thermal energy storage system," Renewable Energy, Elsevier, vol. 6(8), pages 1033-1039.
    2. Enibe, S.O., 2003. "Thermal analysis of a natural circulation solar air heater with phase change material energy storage," Renewable Energy, Elsevier, vol. 28(14), pages 2269-2299.
    3. Li, Li & Qu, Ming & Peng, Steve, 2017. "Performance evaluation of building integrated solar thermal shading system: Active solar energy usage," Renewable Energy, Elsevier, vol. 109(C), pages 576-585.
    4. Borello, Domenico & Corsini, Alessandro & Delibra, Giovanni & Evangelisti, Sara & Micangeli, Andrea, 2012. "Experimental and computational investigation of a new solar integrated collector storage system," Applied Energy, Elsevier, vol. 97(C), pages 982-989.
    5. Ramadan, M.R.I. & El-Sebaii, A.A. & Aboul-Enein, S. & El-Bialy, E., 2007. "Thermal performance of a packed bed double-pass solar air heater," Energy, Elsevier, vol. 32(8), pages 1524-1535.
    6. Mettawee, Eman-Bellah S. & Assassa, Ghazy M.R., 2006. "Experimental study of a compact PCM solar collector," Energy, Elsevier, vol. 31(14), pages 2958-2968.
    7. Saxena, Abhishek & Srivastava, Ghanshyam & Tirth, Vineet, 2015. "Design and thermal performance evaluation of a novel solar air heater," Renewable Energy, Elsevier, vol. 77(C), pages 501-511.
    8. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    9. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    10. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2023. "Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe," Energy, Elsevier, vol. 275(C).
    2. Zhou, Ruiwen & Ling, Xiang & Peng, Hao & Yang, Lin, 2018. "Thermal characteristics of the combined flat plate heat receiver in solar power tower plant," Energy, Elsevier, vol. 165(PA), pages 275-289.
    3. Hu, Mingke & Zhao, Bin & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study," Energy, Elsevier, vol. 251(C).
    4. Zeng, Ziya & Zhao, Bingchen & Wang, Ruzhu, 2023. "High-power-density packed-bed thermal energy storage using form-stable expanded graphite-based phase change composite," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Zhong, Guisheng & Tang, Yong & Ding, Xinrui & Rao, Longshi & Chen, Gong & Tang, Kairui & Yuan, Wei & Li, Zongtao, 2020. "Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions," Renewable Energy, Elsevier, vol. 149(C), pages 1032-1039.
    6. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    7. Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
    8. Allouhi, A. & Benzakour Amine, M. & Buker, M.S. & Kousksou, T. & Jamil, A., 2019. "Forced-circulation solar water heating system using heat pipe-flat plate collectors: Energy and exergy analysis," Energy, Elsevier, vol. 180(C), pages 429-443.
    9. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2019. "Thermal performance investigation of an integrated collector–storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode," Energy, Elsevier, vol. 181(C), pages 882-896.
    10. Ng, Edmund Chong Jie & Kueh, Tze Cheng & Wang, Xin & Soh, Ai Kah & Hung, Yew Mun, 2021. "Anomalously enhanced thermal performance of carbon-nanotubes coated micro heat pipes," Energy, Elsevier, vol. 214(C).
    11. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2022. "Visualization experiment and numerical study of latent heat storage unit using micro-heat pipe arrays: Melting process," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
    2. Kalaiarasi, G. & Velraj, R. & Vanjeswaran, M.N. & Ganesh Pandian, N., 2020. "Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 255-265.
    3. Razak, A.A. & Majid, Z.A.A. & Azmi, W.H. & Ruslan, M.H. & Choobchian, Sh. & Najafi, G. & Sopian, K., 2016. "Review on matrix thermal absorber designs for solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 682-693.
    4. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2019. "Thermal performance investigation of an integrated collector–storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode," Energy, Elsevier, vol. 181(C), pages 882-896.
    5. Feliński, P. & Sekret, R., 2016. "Experimental study of evacuated tube collector/storage system containing paraffin as a PCM," Energy, Elsevier, vol. 114(C), pages 1063-1072.
    6. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    7. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    8. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    9. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    11. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    13. Tavakoli, Ali & Hashemi, Javad & Najafian, Mahyar & Ebrahimi, Amin, 2023. "Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins," Renewable Energy, Elsevier, vol. 217(C).
    14. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    15. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    16. Vítor Leal & Raul Teixeira, 2020. "PoDIT: Portable Device for Indoor Temperature Stabilization: Concept and Theoretical Performance Assessment," Energies, MDPI, vol. 13(22), pages 1-15, November.
    17. Liu, Chenzhen & Cheng, Qingjiang & Li, Baohuan & Liu, Xinjian & Rao, Zhonghao, 2023. "Recent advances of sugar alcohols phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    19. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    20. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:924-939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.