IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v182y2023ics1364032123002307.html
   My bibliography  Save this article

High-power-density packed-bed thermal energy storage using form-stable expanded graphite-based phase change composite

Author

Listed:
  • Zeng, Ziya
  • Zhao, Bingchen
  • Wang, Ruzhu

Abstract

Thermal energy storage is highlighted as a crucial strategy for energy saving and utilization, in which domain, latent heat storage using phase change materials has gained great potential for efficient heat storage and thermal management applications. A strategy for developing high energy-storage-density and power-density latent heat storage units, through the compression-induced assembly of expanded graphite based stearic acid composites and the macro encapsulation method by using polyethylene shells, is demonstrated. The fabricated composite shows a satisfactory phase change enthalpy of 161.24 ± 0.5 J g−1, and enhances thermal conductivity to 13.4 ± 0.8 W m−1 K−1. The resulting heat storage unit also exhibits form-stable, leakage-proof, good homogeneity, and high-power-density behaviors. A 0.462 kWh proof-of-concept prototype of the packed-bed latent-heat-storage system by using 492 heat storage units has demonstrated its feasibility in fast heat charging/discharging operations. The outlet air temperature in the discharging process can maintain above 30 °C for over 1.74 h with a heat storage utilization efficiency of 90.3 ± 6.1% and an effective discharging efficiency of 93.5 ± 9.4%, under a volumetric flow rate of 30 m3 h−1 and heat storage temperature of 27–86 °C. The maximum and average power density, and effective energy density are obtained as 20.7 ± 1.6 kW m−3, 14.2 ± 0.9 kW m−3, 24.8 ± 2.5 kWh m−3, respectively, with a discharging threshold temperature of 30 °C. This high-power-density apparatus using form-stable heat storage units has realized hourly rapid heat charging-discharging processes, showing its prospective potential of low-temperature heat storage and thermal management.

Suggested Citation

  • Zeng, Ziya & Zhao, Bingchen & Wang, Ruzhu, 2023. "High-power-density packed-bed thermal energy storage using form-stable expanded graphite-based phase change composite," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002307
    DOI: 10.1016/j.rser.2023.113373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123002307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouadila, Salwa & Kooli, Sami & Lazaar, Mariem & Skouri, Safa & Farhat, Abdelhamid, 2013. "Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use," Applied Energy, Elsevier, vol. 110(C), pages 267-275.
    2. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    3. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    5. Yongyu Lu & Dehai Yu & Haoxuan Dong & Jinran Lv & Lichen Wang & He Zhou & Zhen Li & Jing Liu & Zhizhu He, 2022. "Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.
    7. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    8. Al-Shannaq, Refat & Young, Brent & Farid, Mohammed, 2019. "Cold energy storage in a packed bed of novel graphite/PCM composite spheres," Energy, Elsevier, vol. 171(C), pages 296-305.
    9. Gao, Huan & Bing, Naici & Xie, Huaqing & Yu, Wei, 2022. "Energy harvesting and storage blocks based on 3D oriented expanded graphite and stearic acid with high thermal conductivity for solar thermal application," Energy, Elsevier, vol. 254(PA).
    10. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    11. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    12. Zhang, P. & Meng, Z.N. & Zhu, H. & Wang, Y.L. & Peng, S.P., 2017. "Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam," Applied Energy, Elsevier, vol. 185(P2), pages 1971-1983.
    13. Guo, Weimin & He, Zhaoyu & Zhang, Yuting & Zhang, Peng, 2022. "Thermal performance of the packed bed thermal energy storage system with encapsulated phase change material," Renewable Energy, Elsevier, vol. 196(C), pages 1345-1356.
    14. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Zhao, B.C. & Li, T.X. & Gao, J.C. & Wang, R.Z., 2020. "Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ELSihy, ELSaeed Saad & Cai, Changrui & Li, Zhenpeng & Du, Xiaoze & Wang, Zuyuan, 2024. "Performance investigation on the cascaded packed bed thermal energy storage system with encapsulated nano-enhanced phase change materials for high-temperature applications," Energy, Elsevier, vol. 293(C).
    2. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    3. Huiqian Guo & ELSaeed Saad ELSihy & Zhirong Liao & Xiaoze Du, 2021. "A Comparative Study on the Performance of Single and Multi-Layer Encapsulated Phase Change Material Packed-Bed Thermocline Tanks," Energies, MDPI, vol. 14(8), pages 1-24, April.
    4. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Lioua Kolsi & Fatih Selimefendigil & Mohamed Omri, 2021. "Effects of Surface Rotation on the Phase Change Process in a 3D Complex-Shaped Cylindrical Cavity with Ventilation Ports and Installed PCM Packed Bed System during Hybrid Nanofluid Convection," Mathematics, MDPI, vol. 9(20), pages 1-17, October.
    6. Jeroen Mol & Mina Shahi & Amirhoushang Mahmoudi, 2020. "Numerical Modeling of Thermal Storage Performance of Encapsulated PCM Particles in an Unstructured Packed Bed," Energies, MDPI, vol. 13(23), pages 1-16, December.
    7. Sathishkumar, A. & Cheralathan, M., 2023. "Charging and discharging processes of low capacity nano-PCM based cool thermal energy storage system: An experimental study," Energy, Elsevier, vol. 263(PB).
    8. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Wang, Lu & Guo, Leihong & Ren, Jianlin & Kong, Xiangfei, 2022. "Using of heat thermal storage of PCM and solar energy for distributed clean building heating: A multi-level scale-up research," Applied Energy, Elsevier, vol. 321(C).
    10. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Tian, Lei & Wang, Jiangjiang & Zhao, Lei & Wei, Changqi, 2023. "Unsteady-state thermal performance analysis of cascaded packed-bed latent thermal storage in solar heating system," Energy, Elsevier, vol. 272(C).
    12. Xu, Tianhao & Humire, Emma Nyholm & Chiu, Justin Ning-Wei & Sawalha, Samer, 2020. "Numerical thermal performance investigation of a latent heat storage prototype toward effective use in residential heating systems," Applied Energy, Elsevier, vol. 278(C).
    13. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2019. "Thermal performance investigation of an integrated collector–storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode," Energy, Elsevier, vol. 181(C), pages 882-896.
    14. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    16. Ge, Y.Q. & Zhao, Y. & Zhao, C.Y., 2021. "Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores," Renewable Energy, Elsevier, vol. 174(C), pages 939-951.
    17. Yao, Haichen & Liu, Xianglei & Li, Jiawei & Luo, Qingyang & Tian, Yang & Xuan, Yimin, 2023. "Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system," Energy, Elsevier, vol. 284(C).
    18. Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
    19. Gao, Long & Gegentana, & Liu, Zhongze & Sun, Baizhong & Che, Deyong & Li, Shaohua, 2020. "Multi-objective optimization of thermal performance of packed bed latent heat thermal storage system based on response surface method," Renewable Energy, Elsevier, vol. 153(C), pages 669-680.
    20. Afshan, Mahboob E. & Selvakumar, A.S & Velraj, R. & Rajaraman, R., 2020. "Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications," Renewable Energy, Elsevier, vol. 148(C), pages 876-888.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.