Thermal performance investigation of an integrated collector–storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.05.197
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fath, Hassan E.S., 1995. "Thermal performance of a simple design solar air heater with built-in thermal energy storage system," Renewable Energy, Elsevier, vol. 6(8), pages 1033-1039.
- Enibe, S.O., 2003. "Thermal analysis of a natural circulation solar air heater with phase change material energy storage," Renewable Energy, Elsevier, vol. 28(14), pages 2269-2299.
- Saxena, Abhishek & Srivastava, Ghanshyam & Tirth, Vineet, 2015. "Design and thermal performance evaluation of a novel solar air heater," Renewable Energy, Elsevier, vol. 77(C), pages 501-511.
- Bouadila, Salwa & Kooli, Sami & Lazaar, Mariem & Skouri, Safa & Farhat, Abdelhamid, 2013. "Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use," Applied Energy, Elsevier, vol. 110(C), pages 267-275.
- Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.
- Kalaiarasi, G. & Velraj, R. & Swami, Muthusamy V., 2016. "Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage," Energy, Elsevier, vol. 111(C), pages 609-619.
- Enibe, S.O, 2002. "Performance of a natural circulation solar air heating system with phase change material energy storage," Renewable Energy, Elsevier, vol. 27(1), pages 69-86.
- Fath, Hassan E.S., 1995. "Transient analysis of thermosyphon solar air heater with built-in latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 6(2), pages 119-124.
- Dhiman, Prashant & Thakur, N.S. & Kumar, Anoop & Singh, Satyender, 2011. "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, Elsevier, vol. 88(6), pages 2157-2167, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Dengke & Diao, Yanhua & Wang, Zeyu & Pan, Yawen & Wang, Xinran & Zhao, Yaohua, 2024. "Thermal performance and optimization of an integrated collector–storage solar air heater based on lap joint-type flat micro-heat pipe arrays," Renewable Energy, Elsevier, vol. 228(C).
- Pardeshi, Poonam S. & Boulic, Mikael & van Heerden, Andries (Hennie) & Phipps, Robyn & Cunningham, Chris W., 2024. "Review of the thermal efficiency of a tube-type solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
- Ng, Edmund Chong Jie & Kueh, Tze Cheng & Wang, Xin & Soh, Ai Kah & Hung, Yew Mun, 2021. "Anomalously enhanced thermal performance of carbon-nanotubes coated micro heat pipes," Energy, Elsevier, vol. 214(C).
- Kareem, M.W. & Habib, Khairul & Pasha, Amjad A. & Irshad, Kashif & Afolabi, L.O. & Saha, Bidyut Baran, 2022. "Experimental study of multi-pass solar air thermal collector system assisted with sensible energy-storing matrix," Energy, Elsevier, vol. 245(C).
- Yang, Moucun & Moghimi, M.A. & Loillier, R. & Markides, C.N. & Kadivar, M., 2023. "Design of a latent heat thermal energy storage system under simultaneous charging and discharging for solar domestic hot water applications," Applied Energy, Elsevier, vol. 336(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kalaiarasi, G. & Velraj, R. & Vanjeswaran, M.N. & Ganesh Pandian, N., 2020. "Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 255-265.
- Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
- Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.
- Saxena, Abhishek & Srivastava, Ghanshyam & Tirth, Vineet, 2015. "Design and thermal performance evaluation of a novel solar air heater," Renewable Energy, Elsevier, vol. 77(C), pages 501-511.
- Olivkar, Piyush R. & Katekar, Vikrant P. & Deshmukh, Sandip S. & Palatkar, Sanyukta V., 2022. "Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Abuşka, Mesut & Şevik, Seyfi & Kayapunar, Arif, 2019. "Comparative energy and exergy performance investigation of forced convection solar air collectors with cherry stone/powder," Renewable Energy, Elsevier, vol. 143(C), pages 34-46.
- Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
- Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
- Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
- Mettawee, Eman-Bellah S. & Assassa, Ghazy M.R., 2006. "Experimental study of a compact PCM solar collector," Energy, Elsevier, vol. 31(14), pages 2958-2968.
- Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
- Choi, Youngjin, 2020. "Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia," Renewable Energy, Elsevier, vol. 162(C), pages 685-700.
- Dolado, Pablo & Lazaro, Ana & Marin, Jose M. & Zalba, Belen, 2011. "Characterization of melting and solidification in a real-scale PCM–air heat exchanger: Experimental results and empirical model," Renewable Energy, Elsevier, vol. 36(11), pages 2906-2917.
- Bouadila, Salwa & Kooli, Sami & Lazaar, Mariem & Skouri, Safa & Farhat, Abdelhamid, 2013. "Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use," Applied Energy, Elsevier, vol. 110(C), pages 267-275.
- Tandel, Hiren U. & Modi, Kalpesh V., 2022. "Experimental assessment of double-pass solar air heater by incorporating perforated baffles and solar water heating system," Renewable Energy, Elsevier, vol. 183(C), pages 385-405.
- Moradi, Hamid & Mirjalily, Seyed Ali Agha & Oloomi, Seyed Amir Abbas & Karimi, Hajir, 2022. "Performance evaluation of a solar air heating system integrated with a phase change materials energy storage tank for efficient thermal energy storage and management," Renewable Energy, Elsevier, vol. 191(C), pages 974-986.
- Zeng, Ziya & Zhao, Bingchen & Wang, Ruzhu, 2023. "High-power-density packed-bed thermal energy storage using form-stable expanded graphite-based phase change composite," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Fath, Hassan E.S., 1998. "Technical assessment of solar thermal energy storage technologies," Renewable Energy, Elsevier, vol. 14(1), pages 35-40.
- Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
- Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
More about this item
Keywords
Flat micro-heat pipe array; Latent heat storage; Integrated collector-storage solar air heater; Lap joint-type heat pipe; Simultaneous charging and discharging;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:882-896. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.