IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1054-d215177.html
   My bibliography  Save this article

Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation

Author

Listed:
  • Youngjin Choi

    (Platform of Inter/Transdisciplinary Energy Research, Kyushu University, Fukuoka 8190395, Japan)

  • Masayuki Mae

    (Platform of Inter/Transdisciplinary Energy Research, Kyushu University, Fukuoka 8190395, Japan)

  • Hyunwoo Roh

    (Platform of Inter/Transdisciplinary Energy Research, Kyushu University, Fukuoka 8190395, Japan)

  • Wanghee Cho

    (Platform of Inter/Transdisciplinary Energy Research, Kyushu University, Fukuoka 8190395, Japan)

Abstract

This study examines the effect of an air-based solar heating system that can be used directly for convection heating while minimizing thermal leakage. To compare the effect of reducing the heating and hot water load when using the system, a simulation model of the system is created, and annual load calculations are performed. The results of the simulation study show that the annual heating load is reduced by 5.39 GJ and the hot water load is reduced by 10.32 GJ when using the air-based solar heating system, resulting in a 48.3% annual load reduction effect. In addition, by analyzing the thermal balance of the indoor space based on the application of the air-based solar heating system, the problem of the existing system is elucidated. In order to improve the performance of the system as shown in the thermal balance, it is necessary not only to improve the performance of the collector, but also to review its thermal storage, insulation, and proper control.

Suggested Citation

  • Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1054-:d:215177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    2. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    3. Othman, M.Y.H. & Sopian, K. & Yatim, B. & Daud, W.R.W., 2006. "Development of advanced solar assisted drying systems," Renewable Energy, Elsevier, vol. 31(5), pages 703-709.
    4. Amori, Karima E. & Taqi Al-Najjar, Hussein M., 2012. "Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq," Applied Energy, Elsevier, vol. 98(C), pages 384-395.
    5. Amori, Karima E. & Abd-AlRaheem, Mustafa Adil, 2014. "Field study of various air based photovoltaic/thermal hybrid solar collectors," Renewable Energy, Elsevier, vol. 63(C), pages 402-414.
    6. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    7. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    8. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    9. He, Wei & Chow, Tin-Tai & Ji, Jie & Lu, Jianping & Pei, Gang & Chan, Lok-shun, 2006. "Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water," Applied Energy, Elsevier, vol. 83(3), pages 199-210, March.
    10. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    11. Alvarez, A. & Cabeza, O. & Muñiz, M.C. & Varela, L.M., 2010. "Experimental and numerical investigation of a flat-plate solar collector," Energy, Elsevier, vol. 35(9), pages 3707-3716.
    12. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.
    13. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Pei, Gang, 2018. "Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector," Energy, Elsevier, vol. 165(PA), pages 811-824.
    14. Ji, Jie & Lu, Jian-Ping & Chow, Tin-Tai & He, Wei & Pei, Gang, 2007. "A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation," Applied Energy, Elsevier, vol. 84(2), pages 222-237, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Frazzica & Vincenza Brancato & Belal Dawoud, 2020. "Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology," Energies, MDPI, vol. 13(5), pages 1-17, February.
    2. Choi, Youngjin, 2020. "Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia," Renewable Energy, Elsevier, vol. 162(C), pages 685-700.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    2. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    4. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    5. Guo, Jinyi & Lin, Simao & Bilbao, Jose I. & White, Stephen D. & Sproul, Alistair B., 2017. "A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1-14.
    6. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    7. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    8. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    9. Mojumder, Juwel Chandra & Ong, Hwai Chyuan & Chong, Wen Tong & Izadyar, Nima & Shamshirband, Shahaboddin, 2017. "The intelligent forecasting of the performances in PV/T collectors based on soft computing method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1366-1378.
    10. Nosrat, Amir & Pearce, Joshua M., 2011. "Dispatch strategy and model for hybrid photovoltaic and trigeneration power systems," Applied Energy, Elsevier, vol. 88(9), pages 3270-3276.
    11. Diallo, Thierno M.O. & Yu, Min & Zhou, Jinzhi & Zhao, Xudong & Shittu, Samson & Li, Guiqiang & Ji, Jie & Hardy, David, 2019. "Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger," Energy, Elsevier, vol. 167(C), pages 866-888.
    12. Wang, Yunyun & Pei, Gang & Zhang, Longcan, 2014. "Effects of frame shadow on the PV character of a photovoltaic/thermal system," Applied Energy, Elsevier, vol. 130(C), pages 326-332.
    13. del Amo, Alejandro & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A. & Antoñanzas, Javier, 2017. "An innovative urban energy system constituted by a photovoltaic/thermal hybrid solar installation: Design, simulation and monitoring," Applied Energy, Elsevier, vol. 186(P2), pages 140-151.
    14. Pathak, M.J.M. & Sanders, P.G. & Pearce, J.M., 2014. "Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems," Applied Energy, Elsevier, vol. 120(C), pages 115-124.
    15. Saeed Abdul-Ganiyu & David A Quansah & Emmanuel W Ramde & Razak Seidu & Muyiwa S. Adaramola, 2020. "Investigation of Solar Photovoltaic-Thermal (PVT) and Solar Photovoltaic (PV) Performance: A Case Study in Ghana," Energies, MDPI, vol. 13(11), pages 1-17, May.
    16. Hossain, M.S. & Saidur, R. & Fayaz, H. & Rahim, N.A. & Islam, M.R. & Ahamed, J.U. & Rahman, M.M., 2011. "Review on solar water heater collector and thermal energy performance of circulating pipe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3801-3812.
    17. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    18. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    19. Chen, Fangliang & Yin, Huiming, 2016. "Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel," Applied Energy, Elsevier, vol. 177(C), pages 271-284.
    20. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1054-:d:215177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.