IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v109y2017icp576-585.html
   My bibliography  Save this article

Performance evaluation of building integrated solar thermal shading system: Active solar energy usage

Author

Listed:
  • Li, Li
  • Qu, Ming
  • Peng, Steve

Abstract

This paper presents an evaluation of the building integrated solar thermal shading (BISTS) system on solar energy usage. A medium office building in Los Angeles defined by the U.S. Department of Energy (DOE) was used in the case study. The BISTS louvers mounted on the south, east, and west façades of the building were used to harvest solar energy to supply domestic hot water (DHW), space heating and/or cooling. The solar thermal system was modeled and simulated in TRNSYS. Solar fraction and solar useful efficiency were calculated, and a recommended operation strategy was proposed. The results indicated that: 1) potentially, the annual domestic hot water load can be fully supplied by the BISTS system. To achieve a recommended solar fraction 75%, either 10 m2 collector on the south façade or 33 m2 collector on the east and west façades are required; 2) 20.2% of cooling load or 64.6% of heating load can be met by the remaining collectors. The BISTS on the south façade is primarily recommended to provide space heating and/or cooling; 3) combined heating and cooling enables the system to take more advantage of solar energy for energy savings from auxiliary heating.

Suggested Citation

  • Li, Li & Qu, Ming & Peng, Steve, 2017. "Performance evaluation of building integrated solar thermal shading system: Active solar energy usage," Renewable Energy, Elsevier, vol. 109(C), pages 576-585.
  • Handle: RePEc:eee:renene:v:109:y:2017:i:c:p:576-585
    DOI: 10.1016/j.renene.2017.03.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117302604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 36-51.
    2. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 178-191.
    3. Motte, Fabrice & Notton, Gilles & Cristofari, Christian & Canaletti, Jean-Louis, 2013. "A building integrated solar collector: Performances characterization and first stage of numerical calculation," Renewable Energy, Elsevier, vol. 49(C), pages 1-5.
    4. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    5. Kalogirou, S.A. & Lloyd, S., 1992. "Use of solar Parabolic Trough Collectors for hot water production in Cyprus. A feasibility study," Renewable Energy, Elsevier, vol. 2(2), pages 117-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & He, Benlin & Tang, Qunwei, 2018. "Harvest rain energy by polyaniline-graphene composite films," Renewable Energy, Elsevier, vol. 125(C), pages 995-1002.
    2. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debbarma, Mary & Sudhakar, K. & Baredar, Prashant, 2017. "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1276-1288.
    2. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Leone, Giuliana & Beccali, Marco, 2016. "Use of finite element models for estimating thermal performance of façade-integrated solar thermal collectors," Applied Energy, Elsevier, vol. 171(C), pages 392-404.
    4. Lamnatou, Chr. & Cristofari, C. & Chemisana, D. & Canaletti, J.L., 2016. "Building-integrated solar thermal systems based on vacuum-tube technology: Critical factors focusing on life-cycle environmental profile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1199-1215.
    5. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    6. Si, Pengfei & Feng, Ya & Lv, Yuexia & Rong, Xiangyang & Pan, Yungang & Liu, Xichen & Yan, Jinyue, 2017. "An optimization method applied to active solar energy systems for buildings in cold plateau areas – The case of Lhasa," Applied Energy, Elsevier, vol. 194(C), pages 487-498.
    7. Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Kalogirou, S.A. & Palombo, A., 2019. "Building façade integrated solar thermal collectors for air heating: experimentation, modelling and applications," Applied Energy, Elsevier, vol. 239(C), pages 658-679.
    8. Chemisana, D. & Rosell, J.I. & Riverola, A. & Lamnatou, Chr., 2016. "Experimental performance of a Fresnel-transmission PVT concentrator for building-façade integration," Renewable Energy, Elsevier, vol. 85(C), pages 564-572.
    9. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    10. Geng, Shengnan & Wang, Yuan & Zuo, Jian & Zhou, Zhihua & Du, Huibin & Mao, Guozhu, 2017. "Building life cycle assessment research: A review by bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 176-184.
    11. Chen, Fangliang & Yin, Huiming, 2016. "Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel," Applied Energy, Elsevier, vol. 177(C), pages 271-284.
    12. Vieira, Abel S. & Stewart, Rodney A. & Lamberts, Roberto & Beal, Cara D., 2018. "Residential solar water heaters in Brisbane, Australia: Key performance parameters and indicators," Renewable Energy, Elsevier, vol. 116(PA), pages 120-132.
    13. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 178-191.
    14. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    15. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    16. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2019. "Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors," Renewable Energy, Elsevier, vol. 137(C), pages 109-126.
    17. Gagliano, Antonio & Aneli, Stefano & Nocera, Francesco, 2019. "Analysis of the performance of a building solar thermal facade (BSTF) for domestic hot water production," Renewable Energy, Elsevier, vol. 142(C), pages 511-526.
    18. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 36-51.
    19. Junpeng Huang & Jianhua Fan & Simon Furbo & Liqun Li, 2019. "Solar Water Heating Systems Applied to High-Rise Buildings—Lessons from Experiences in China," Energies, MDPI, vol. 12(16), pages 1-26, August.
    20. Sánchez, M.N. & Giancola, E. & Suárez, M.J. & Blanco, E. & Heras, M.R., 2017. "Experimental evaluation of the airflow behaviour in horizontal and vertical Open Joint Ventilated Facades using Stereo-PIV," Renewable Energy, Elsevier, vol. 109(C), pages 613-623.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:109:y:2017:i:c:p:576-585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.