PoDIT: Portable Device for Indoor Temperature Stabilization: Concept and Theoretical Performance Assessment
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Iten, Muriel & Liu, Shuli & Shukla, Ashish, 2016. "A review on the air-PCM-TES application for free cooling and heating in the buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 175-186.
- Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
- de Gracia, Alvaro, 2019. "Dynamic building envelope with PCM for cooling purposes – Proof of concept," Applied Energy, Elsevier, vol. 235(C), pages 1245-1253.
- Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vítor Leal, 2021. "Buildings Energy Efficiency and Innovative Energy Systems," Energies, MDPI, vol. 14(16), pages 1-5, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Tavakoli, Ali & Hashemi, Javad & Najafian, Mahyar & Ebrahimi, Amin, 2023. "Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins," Renewable Energy, Elsevier, vol. 217(C).
- Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
- Liu, Chenzhen & Cheng, Qingjiang & Li, Baohuan & Liu, Xinjian & Rao, Zhonghao, 2023. "Recent advances of sugar alcohols phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Nora Cadau & Andrea De Lorenzi & Agostino Gambarotta & Mirko Morini & Michele Rossi, 2019. "Development and Analysis of a Multi-Node Dynamic Model for the Simulation of Stratified Thermal Energy Storage," Energies, MDPI, vol. 12(22), pages 1-22, November.
- Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Yanjun Zhang & Shuli Liu & Liu Yang & Xiue Yang & Yongliang Shen & Xiaojing Han, 2020. "Experimental Study on the Strengthen Heat Transfer Performance of PCM by Active Stirring," Energies, MDPI, vol. 13(9), pages 1-16, May.
- Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
- Sun, Kun & Liu, Huan & Wang, Xiaodong & Wu, Dezhen, 2019. "Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell," Applied Energy, Elsevier, vol. 237(C), pages 549-565.
- Bruce J. Hardy & Claudio Corgnale & Stephanie N. Gamble, 2021. "Operating Characteristics of Metal Hydride-Based Solar Energy Storage Systems," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
- Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
- Mendecka, Barbara & Cozzolino, Raffaello & Leveni, Martina & Bella, Gino, 2019. "Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage," Energy, Elsevier, vol. 176(C), pages 816-829.
- Ahmad Sedaghat & Arash Mahdizadeh & Ramadas Narayanan & Hayder Salem & Wisam K. Hussam & Mohamad Iyad Al-Khiami & Mahdi Ashtian Malayer & Sayed M. Soleimani & Mohammad Sabati & Mohammad Rasul & Mohamm, 2023. "Implementing Cool Roof and Bio-PCM in Portable Cabins to Create Low-Energy Buildings Suitable for Different Climates," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
- Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.
- Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
- Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
- Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.
More about this item
Keywords
passive cooling; low energy cooling; heat waves; climate adaptation; social housing; nearly zero energy buildings;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5982-:d:445919. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.