IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304720.html
   My bibliography  Save this article

Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study

Author

Listed:
  • Ullah, Saif
  • Khan, Muhammad Altaf

Abstract

Coronavirus disease (COVID-19) is the biggest public health challenge the world is facing in recent days. Since there is no effective vaccine and treatment for this virus, therefore, the only way to mitigate this infection is the implementation of non-pharmaceutical interventions such as social-distancing, community lockdown, quarantine, hospitalization or self-isolation and contact-tracing. In this paper, we develop a mathematical model to explore the transmission dynamics and possible control of the COVID-19 pandemic in Pakistan, one of the Asian countries with a high burden of disease with more than 200,000 confirmed infected cases so far. Initially, a mathematical model without optimal control is formulated and some of the basic necessary analysis of the model, including stability results of the disease-free equilibrium is presented. It is found that the model is stable around the disease-free equilibrium both locally and globally when the basic reproduction number is less than unity. Despite the basic analysis of the model, we further consider the confirmed infected COVID-19 cases documented in Pakistan from March 1, till May 28, 2020 and estimate the model parameters using the least square fitting tools from statistics and probability theory. The results show that the model output is in good agreement with the reported COVID-19 infected cases. The approximate value of the basic reproductive number based on the estimated parameters is R0≈1.87. The effect of low (or mild), moderate, and comparatively strict control interventions like social-distancing, quarantine rate, (or contact-tracing of suspected people) and hospitalization (or self-isolation) of testing positive COVID-19 cases are shown graphically. It is observed that the most effective strategy to minimize the disease burden is the implementation of maintaining a strict social-distancing and contact-tracing to quarantine the exposed people. Furthermore, we carried out the global sensitivity analysis of the most crucial parameter known as the basic reproduction number using the Latin Hypercube Sampling (LHS) and the partial rank correlation coefficient (PRCC) techniques. The proposed model is then reformulated by adding the time-dependent control variables u1(t) for quarantine and u2(t) for the hospitalization interventions and present the necessary optimality conditions using the optimal control theory and Pontryagin’s maximum principle. Finally, the impact of constant and optimal control interventions on infected individuals is compared graphically.

Suggested Citation

  • Ullah, Saif & Khan, Muhammad Altaf, 2020. "Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304720
    DOI: 10.1016/j.chaos.2020.110075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torrealba-Rodriguez, O. & Conde-Gutiérrez, R.A. & Hernández-Javier, A.L., 2020. "Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Khan, Muhammad Altaf & Islam, Saeed & Zaman, Gul, 2018. "Media coverage campaign in Hepatitis B transmission model," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 378-393.
    3. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krista Danielle S. Yu & Kathleen B. Aviso & Joost R. Santos & Raymond R. Tan, 2020. "The Economic Impact of Lockdowns: A Persistent Inoperability Input-Output Approach," Economies, MDPI, vol. 8(4), pages 1-14, December.
    2. Li, Tingting & Guo, Youming, 2022. "Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Altun, Ishak & Sahin, Hakan & Aslantas, Mustafa, 2021. "A new approach to fractals via best proximity point," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Ali, Javaid & Raza, Ali & Ahmed, Nauman & Ahmadian, Ali & Rafiq, Muhammad & Ferrara, Massimiliano, 2021. "Evolutionary optimized Padé approximation scheme for analysis of covid-19 model with crowding effect," Operations Research Perspectives, Elsevier, vol. 8(C).
    5. Asamoah, Joshua Kiddy K. & Jin, Zhen & Sun, Gui-Quan & Seidu, Baba & Yankson, Ernest & Abidemi, Afeez & Oduro, F.T. & Moore, Stephen E. & Okyere, Eric, 2021. "Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Khan, Muhammad Altaf & Atangana, Abdon, 2022. "Mathematical modeling and analysis of COVID-19: A study of new variant Omicron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    7. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Md Arif Billah & Md Mamun Miah & Md Nuruzzaman Khan, 2020. "Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
    9. Ojo, Mayowa M. & Benson, Temitope O. & Peter, Olumuyiwa James & Goufo, Emile Franc Doungmo, 2022. "Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Sara K Al-Harbi & Salma M Al-Tuwairqi, 2022. "Modeling the effect of lockdown and social distancing on the spread of COVID-19 in Saudi Arabia," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-40, April.
    11. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    12. Yiheng Li, 2024. "Optimal Control for an Epidemic Model of COVID-19 with Time-Varying Parameters," Mathematics, MDPI, vol. 12(10), pages 1-15, May.
    13. Boudaoui, Ahmed & El hadj Moussa, Yacine & Hammouch, Zakia & Ullah, Saif, 2021. "A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Liu, Xuan & Ullah, Saif & Alshehri, Ahmed & Altanji, Mohamed, 2021. "Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    15. Tingting Li & Youming Guo, 2022. "Optimal Control Strategy of an Online Game Addiction Model with Incomplete Recovery," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 780-807, December.
    16. Torsten Thalheim & Tyll Krüger & Jörg Galle, 2022. "Indirect Virus Transmission via Fomites Can Counteract Lock-Down Effectiveness," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    17. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    18. Siphokazi Princess Gatyeni & Faraimunashe Chirove & Farai Nyabadza, 2022. "Modelling the Potential Impact of Stigma on the Transmission Dynamics of COVID-19 in South Africa," Mathematics, MDPI, vol. 10(18), pages 1-23, September.
    19. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Boudaoui, Ahmed & El hadj Moussa, Yacine & Hammouch, Zakia & Ullah, Saif, 2021. "A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    14. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    15. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    16. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    18. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.