IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920310237.html
   My bibliography  Save this article

A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19

Author

Listed:
  • Jahanshahi, Hadi
  • Munoz-Pacheco, Jesus M.
  • Bekiros, Stelios
  • Alotaibi, Naif D.

Abstract

COVID-19 is a novel coronavirus affecting all the world since December last year. Up to date, the spread of the outbreak continues to complicate our lives, and therefore, several research efforts from many scientific areas are proposed. Among them, mathematical models are an excellent way to understand and predict the epidemic outbreaks evolution to some extent. Due to the COVID-19 may be modeled as a non-Markovian process that follows power-law scaling features, we present a fractional-order SIRD (Susceptible-Infected-Recovered-Dead) model based on the Caputo derivative for incorporating the memory effects (long and short) in the outbreak progress. Additionally, we analyze the experimental time series of 23 countries using fractal formalism. Like previous works, we identify that the COVID-19 evolution shows various power-law exponents (no just a single one) and share some universality among geographical regions. Hence, we incorporate numerous memory indexes in the proposed model, i.e., distinct fractional-orders defined by a time-dependent function that permits us to set specific memory contributions during the evolution. This allows controlling the memory effects of more early states, e.g., before and after a quarantine decree, which could be less relevant than the contribution of more recent ones on the current state of the SIRD system. We also prove our model with Italy’s real data from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.

Suggested Citation

  • Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920310237
    DOI: 10.1016/j.chaos.2020.110632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920310237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    2. Yulmetyev, Renat M. & Emelyanova, Natalya A. & Demin, Sergey A. & Gafarov, Fail M. & Hänggi, Peter & Yulmetyeva, Dinara G., 2004. "Non-Markov stochastic dynamics of real epidemic process of respiratory infections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(1), pages 300-318.
    3. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Tuan, Nguyen Huy & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A mathematical model for COVID-19 transmission by using the Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Martin Dlask & Jaromír Kukal & Michaela Poplová & Pavel Sovka & Michal Cifra, 2019. "Short-time fractal analysis of biological autoluminescence," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    7. Altan, Aytaç & Karasu, Seçkin, 2020. "Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    9. Higazy, M., 2020. "Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    11. Torrealba-Rodriguez, O. & Conde-Gutiérrez, R.A. & Hernández-Javier, A.L., 2020. "Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. Raj, Vimal & Renjini, A. & Swapna, M.S. & Sreejyothi, S. & Sankararaman, S., 2020. "Nonlinear time series and principal component analyses: Potential diagnostic tools for COVID-19 auscultation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Abbasi, M. & Bollini, A.L. & Castillo, J.L.B. & Deppman, A. & Guidio, J.P. & Matuoka, P.T. & Meirelles, A.D. & Policarpo, J.M.P. & Ramos, A.A.G.F. & Simionatto, S. & Varona, A.R.P. & Andrade-II, E. & , 2020. "Fractal signatures of the COVID-19 spread," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Zhang, Yong & Yu, Xiangnan & Sun, HongGuang & Tick, Geoffrey R. & Wei, Wei & Jin, Bin, 2020. "Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    15. Ahmad, Shabir & Ullah, Aman & Al-Mdallal, Qasem M. & Khan, Hasib & Shah, Kamal & Khan, Aziz, 2020. "Fractional order mathematical modeling of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svajone Bekesiene & Igor Samoilenko & Anatolij Nikitin & Ieva Meidute-Kavaliauskiene, 2022. "The Complex Systems for Conflict Interaction Modelling to Describe a Non-Trivial Epidemiological Situation," Mathematics, MDPI, vol. 10(4), pages 1-24, February.
    2. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    3. Sk, Tahajuddin & Biswas, Santosh & Sardar, Tridip, 2022. "The impact of a power law-induced memory effect on the SARS-CoV-2 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Claudia A. Pérez-Pinacho & Cristina Verde, 2022. "A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model," Mathematics, MDPI, vol. 10(5), pages 1-13, February.
    5. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    7. Xie, Bing & Ge, Fudong, 2023. "Parameters and order identification of fractional-order epidemiological systems by Lévy-PSO and its application for the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Kaviya, R. & Priyanka, M. & Muthukumar, P., 2022. "Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Alsaadi, Fawaz E. & Bekiros, Stelios & Yao, Qijia & Liu, Jinping & Jahanshahi, Hadi, 2023. "Achieving resilient chaos suppression and synchronization of fractional-order supply chains with fault-tolerant control," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Paul, James Nicodemus & Mbalawata, Isambi Sailon & Mirau, Silas Steven & Masandawa, Lemjini, 2023. "Mathematical modeling of vaccination as a control measure of stress to fight COVID-19 infections," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Ioannis P. Antoniades & Leonidas P. Karakatsanis & Evgenios G. Pavlos, 2020. "Dynamical Characteristics of Global Stock Markets Based on Time Dependent Tsallis Non-Extensive Statistics and Generalized Hurst Exponents," Papers 2012.06856, arXiv.org, revised Apr 2021.
    5. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Nie, Shiqian & Lei, Xiaochun, 2023. "A time-dependent model of the transmission of COVID-19 variants dynamics using Hausdorff fractal derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    7. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
    8. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Zhou, Jiaying & Ye, Yong & Arenas, Alex & Gómez, Sergio & Zhao, Yi, 2023. "Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    11. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    12. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Erdős, Péter & Li, Youwei & Liu, Ruipeng & Mende, Alexander, 2021. "Same same but different – Stylized facts of CTA sub strategies," International Review of Financial Analysis, Elsevier, vol. 74(C).
    14. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    15. Michele Caraglio & Fulvio Baldovin & Attilio L. Stella, 2021. "How Fast Does the Clock of Finance Run?—A Time-Definition Enforcing Stationarity and Quantifying Overnight Duration," JRFM, MDPI, vol. 14(8), pages 1-15, August.
    16. Kristoufek, Ladislav, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
    17. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    18. Kristoufek, Ladislav, 2009. "R/S analysis and DFA: finite sample properties and confidence intervals," MPRA Paper 16446, University Library of Munich, Germany.
    19. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    20. Hallam, Mark & Olmo, Jose, 2014. "Forecasting daily return densities from intraday data: A multifractal approach," International Journal of Forecasting, Elsevier, vol. 30(4), pages 863-881.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920310237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.