IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920306949.html
   My bibliography  Save this article

Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic

Author

Listed:
  • Cooper, Ian
  • Mondal, Argha
  • Antonopoulos, Chris G.

Abstract

In this paper, a susceptible-infected-removed (SIR) model has been used to track the evolution of the spread of COVID-19 in four countries of interest. In particular, the epidemic model, that depends on some basic characteristics, has been applied to model the evolution of the disease in Italy, India, South Korea and Iran. The economic, social and health consequences of the spread of the virus have been cataclysmic. Hence, it is imperative that mathematical models can be developed and used to compare published datasets with model predictions. The predictions estimated from the presented methodology can be used in both the qualitative and quantitative analysis of the spread. They give an insight into the spread of the virus that the published data alone cannot, by updating them and the model on a daily basis. We show that by doing so, it is possible to detect the early onset of secondary spikes in infections or the development of secondary waves. We considered data from March to August, 2020, when different communities were affected severely and demonstrate predictions depending on the model’s parameters related to the spread of COVID-19 until the end of December, 2020. By comparing the published data with model results, we conclude that in this way, it may be possible to reflect better the success or failure of the adequate measures implemented by governments and authorities to mitigate and control the current pandemic.

Suggested Citation

  • Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306949
    DOI: 10.1016/j.chaos.2020.110298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samuel V. Scarpino & Giovanni Petri, 2019. "On the predictability of infectious disease outbreaks," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Pai, Chintamani & Bhaskar, Ankush & Rawoot, Vaibhav, 2020. "Investigating the dynamics of COVID-19 pandemic in India under lockdown," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Sardar, Tridip & Nadim, Sk Shahid & Rana, Sourav & Chattopadhyay, Joydev, 2020. "Assessment of lockdown effect in some states and overall India: A predictive mathematical study on COVID-19 outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    7. Džiugys, Algis & Bieliūnas, Martynas & Skarbalius, Gediminas & Misiulis, Edgaras & Navakas, Robertas, 2020. "Simplified model of Covid-19 epidemic prognosis under quarantine and estimation of quarantine effectiveness," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    9. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Henry Zhao & Zhilan Feng & Carlos Castillo-Chavez & Simon A. Levin, 2020. "Staggered Release Policies for COVID-19 Control: Costs and Benefits of Sequentially Relaxing Restrictions by Age," Papers 2005.05549, arXiv.org.
    12. Postnikov, Eugene B., 2020. "Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions?," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piccirillo, Vinicius, 2021. "Nonlinear control of infection spread based on a deterministic SEIR model," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    2. Zhu, Cheng-Cheng & Zhu, Jiang, 2021. "Dynamic analysis of a delayed COVID-19 epidemic with home quarantine in temporal-spatial heterogeneous via global exponential attractor method," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Ahumada, M. & Ledesma-Araujo, A. & Gordillo, L. & Marín, J.F., 2023. "Mutation and SARS-CoV-2 strain competition under vaccination in a modified SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "An Extended SEIR Model with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(6), pages 1-16, March.
    6. Avila-Ponce de León, Ugo & Pérez, Ángel G.C. & Avila-Vales, Eric, 2020. "An SEIARD epidemic model for COVID-19 in Mexico: Mathematical analysis and state-level forecast," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    8. Aguilar-Canto, Fernando Javier & de León, Ugo Avila-Ponce & Avila-Vales, Eric, 2022. "Sensitivity theorems of a model of multiple imperfect vaccines for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Păcurar, Cristina-Maria & Necula, Bogdan-Radu, 2020. "An analysis of COVID-19 spread based on fractal interpolation and fractal dimension," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Silva, Petrônio C.L. & Batista, Paulo V.C. & Lima, Hélder S. & Alves, Marcos A. & Guimarães, Frederico G. & Silva, Rodrigo C.P., 2020. "COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    12. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    13. Imdad, Kashif & Sahana, Mehebub & Rana, Md Juel & Haque, Ismail & Patel, Priyank Pravin & Pramanik, Malay, 2020. "The COVID-19 pandemic's footprint in India: An assessment on the district-level susceptibility and vulnerability," MPRA Paper 100727, University Library of Munich, Germany.
    14. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    15. Zhu, Ligang & Li, Xiang & Xu, Fei & Yin, Zhiyong & Jin, Jun & Liu, Zhilong & Qi, Hong & Shuai, Jianwei, 2022. "Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    17. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    19. Gabrick, Enrique C. & Sayari, Elaheh & Protachevicz, Paulo R. & Szezech, José D. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Viana, Ricardo L. & Caldas, Iberê L. & Batista, , 2023. "Unpredictability in seasonal infectious diseases spread," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    20. Jose M. Martin-Moreno & Antoni Alegre-Martinez & Victor Martin-Gorgojo & Jose Luis Alfonso-Sanchez & Ferran Torres & Vicente Pallares-Carratala, 2022. "Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(9), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.