IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v599y2022ics0378437122003326.html
   My bibliography  Save this article

Mathematical modeling and analysis of COVID-19: A study of new variant Omicron

Author

Listed:
  • Khan, Muhammad Altaf
  • Atangana, Abdon

Abstract

We construct a new mathematical model to better understand the novel coronavirus (omicron variant). We briefly present the modeling of COVID-19 with the omicron variant and present their mathematical results. We study that the Omicron model is locally asymptotically stable if the basic reproduction number R0<1, while for R0≤1, the model at the disease-free equilibrium is globally asymptotically stable. We extend the model to the second-order differential equations to study the possible occurrence of the layers(waves). We then extend the model to a fractional stochastic version and studied its numerical results. The real data for the period ranging from November 1, 2021, to January 23, 2022, from South Africa are considered to obtain the realistic values of the model parameters. The basic reproduction number for the suggested data is found to be approximate R0≈2.1107 which is very close to the actual basic reproduction in South Africa. We perform the global sensitivity analysis using the PRCC method to investigate the most influential parameters that increase or decrease R0. We use the new numerical scheme recently reported for the solution of piecewise fractional differential equations to present the numerical simulation of the model. Some graphical results for the model with sensitive parameters are given which indicate that the infection in the population can be minimized by following the recommendations of the world health organizations (WHO), such as social distances, using facemasks, washing hands, avoiding gathering, etc.

Suggested Citation

  • Khan, Muhammad Altaf & Atangana, Abdon, 2022. "Mathematical modeling and analysis of COVID-19: A study of new variant Omicron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
  • Handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003326
    DOI: 10.1016/j.physa.2022.127452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122003326
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nabi, Khondoker Nazmoon & Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Projections and fractional dynamics of COVID-19 with optimal control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Zai-Yin He & Abderrahmane Abbes & Hadi Jahanshahi & Naif D. Alotaibi & Ye Wang, 2022. "Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    3. Erturk, Vedat Suat & Kumar, Pushpendra, 2020. "Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Gao, Wei & Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D. G. & Kumar, Pushpendra, 2020. "A new study of unreported cases of 2019-nCOV epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Zhang, Zizhen, 2020. "Corrigendum to a novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels [Chaos Solitons & Fractals 139 (2020) 110060]," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Ayinde, Kayode & Lukman, Adewale F. & Rauf, Rauf I. & Alabi, Olusegun O. & Okon, Charles E. & Ayinde, Opeyemi E., 2020. "Modeling Nigerian Covid-19 cases: A comparative analysis of models and estimators," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    8. Ullah, Saif & Khan, Muhammad Altaf, 2020. "Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Zhang, Zizhen, 2020. "A novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Nabi, Khondoker Nazmoon & Abboubakar, Hamadjam & Kumar, Pushpendra, 2020. "Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Aldila, Dipo, 2020. "Analyzing the impact of the media campaign and rapid testing for COVID-19 as an optimal control problem in East Java, Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moualkia, Seyfeddine, 2023. "Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Samiran Ghosh & Vitaly Volpert & Malay Banerjee, 2022. "An Epidemic Model with Time Delay Determined by the Disease Duration," Mathematics, MDPI, vol. 10(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Pushpendra & Govindaraj, V. & Erturk, Vedat Suat, 2022. "A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Kumar, Pushpendra & Erturk, Vedat Suat & Yusuf, Abdullahi & Kumar, Sunil, 2021. "Fractional time-delay mathematical modeling of Oncolytic Virotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Kumar, Pushpendra & Erturk, Vedat Suat & Murillo-Arcila, Marina, 2021. "A complex fractional mathematical modeling for the love story of Layla and Majnun," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Khan, Hasib & Ahmad, Farooq & Tunç, Osman & Idrees, Muhammad, 2022. "On fractal-fractional Covid-19 mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    10. Farman, Muhammad & Sarwar, Rabia & Akgul, Ali, 2023. "Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Rajagopal, Karthikeyan & Jafari, Sajad & Li, Chunbiao & Karthikeyan, Anitha & Duraisamy, Prakash, 2021. "Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    13. Muhammad Imran Asjad & Saif Ur Rehman & Ali Ahmadian & Soheil Salahshour & Mehdi Salimi, 2021. "First Solution of Fractional Bioconvection with Power Law Kernel for a Vertical Surface," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    14. Ullah, Mohammad Sharif & Higazy, M. & Ariful Kabir, K.M., 2022. "Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    16. Verma, Pratibha & Kumar, Manoj, 2021. "Analysis of a novel coronavirus (2019-nCOV) system with variable Caputo-Fabrizio fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    17. Boudaoui, Ahmed & El hadj Moussa, Yacine & Hammouch, Zakia & Ullah, Saif, 2021. "A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Tsvetkov, V.P. & Mikheev, S.A. & Tsvetkov, I.V. & Derbov, V.L. & Gusev, A.A. & Vinitsky, S.I., 2022. "Modeling the multifractal dynamics of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.