IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics0960077921002381.html
   My bibliography  Save this article

Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions

Author

Listed:
  • Asamoah, Joshua Kiddy K.
  • Jin, Zhen
  • Sun, Gui-Quan
  • Seidu, Baba
  • Yankson, Ernest
  • Abidemi, Afeez
  • Oduro, F.T.
  • Moore, Stephen E.
  • Okyere, Eric

Abstract

Optimal economic evaluation is pivotal in prioritising the implementation of non-pharmaceutical and pharmaceutical interventions in the control of diseases. Governments, decision-makers and policy-makers broadly need information about the effectiveness of a control intervention concerning its cost-benefit to evaluate whether a control intervention offers the best value for money. The outbreak of COVID-19 in December 2019, and the eventual spread to other parts of the world, have pushed governments and health authorities to take drastic socioeconomic, sociocultural and sociopolitical measures to curb the spread of the virus, SARS-CoV-2. To help policy-makers, health authorities and governments, we propose a Susceptible, Exposed, Asymptomatic, Quarantined asymptomatic, Severely infected, Hospitalized, Recovered, Recovered asymptomatic, Deceased, and Protective susceptible (individuals who observe health protocols) compartmental structure to describe the dynamics of COVID-19. We fit the model to real data from Ghana and Egypt to estimate model parameters using standard incidence rate. Projections for disease control and sensitivity analysis are presented using MATLAB. We noticed that multiple peaks (waves) of COVID-19 for Ghana and Egypt can be prevented if stringent health protocols are implemented for a long time and/or the reluctant behaviour on the use of protective equipment by individuals are minimized. The sensitivity analysis suggests that: the rate of diagnoses and testing, the rate of quarantine through doubling enhanced contact tracing, adhering to physical distancing, adhering to wearing of nose masks, sanitizing-washing hands, media education remains the most effective measures in reducing the control reproduction number Rc, to less than unity in the absence of vaccines and therapeutic drugs in Ghana and Egypt. Optimal control and cost-effectiveness analysis are rigorously studied. The main finding is that having two controls (transmission reduction and case isolation) is better than having one control, but is economically expensive. In case only one control is affordable, then transmission reduction is better than case isolation. Hopefully, the results of this research should help policy-makers when dealing with multiple waves of COVID-19.

Suggested Citation

  • Asamoah, Joshua Kiddy K. & Jin, Zhen & Sun, Gui-Quan & Seidu, Baba & Yankson, Ernest & Abidemi, Afeez & Oduro, F.T. & Moore, Stephen E. & Okyere, Eric, 2021. "Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002381
    DOI: 10.1016/j.chaos.2021.110885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921002381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Smith, Richard D., 2006. "Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management," Social Science & Medicine, Elsevier, vol. 63(12), pages 3113-3123, December.
    3. Ullah, Saif & Khan, Muhammad Altaf, 2020. "Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Joshua Kiddy K. Asamoah & Francis T. Oduro & Ebenezer Bonyah & Baba Seidu, 2017. "Modelling of Rabies Transmission Dynamics Using Optimal Control Analysis," Journal of Applied Mathematics, Hindawi, vol. 2017, pages 1-23, July.
    5. Folashade B Agusto & Ibrahim M ELmojtaba, 2017. "Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-31, February.
    6. Asamoah, Joshua Kiddy K. & Nyabadza, Farai & Jin, Zhen & Bonyah, Ebenezer & Khan, Muhammad Altaf & Li, Michael Y. & Hayat, Tasawar, 2020. "Backward bifurcation and sensitivity analysis for bacterial meningitis transmission dynamics with a nonlinear recovery rate," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Sheng Bin, 2022. "Construction and Simulation Analysis of Epidemic Propagation Model Based on COVID-19 Characteristics," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    3. Fehaid Salem Alshammari & Ezgi Akyildiz Tezcan, 2022. "Exploring Radial Kernel on the Novel Forced SEYNHRV-S Model to Capture the Second Wave of COVID-19 Spread and the Variable Transmission Rate," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    4. Farai Nyabadza & Josiah Mushanyu & Rachel Mbogo & Gift Muchatibaya, 2023. "Modelling the Influence of Dynamic Social Processes on COVID-19 Infection Dynamics," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    5. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Wen-Jing Zhu & Shou-Feng Shen & Wen-Xiu Ma, 2022. "A (2+1)-Dimensional Fractional-Order Epidemic Model with Pulse Jumps for Omicron COVID-19 Transmission and Its Numerical Simulation," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    7. Hoang Pham, 2022. "Mathematical Modeling the Time-Delay Interactions between Tumor Viruses and the Immune System with the Effects of Chemotherapy and Autoimmune Diseases," Mathematics, MDPI, vol. 10(5), pages 1-15, February.
    8. Abidemi, Afeez & Ackora-Prah, Joseph & Fatoyinbo, Hammed Olawale & Asamoah, Joshua Kiddy K., 2022. "Lyapunov stability analysis and optimization measures for a dengue disease transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    9. Lv, Wei & Zhuang, Shi-Jia & Yu, Changjun, 2022. "Robust bi-objective optimal control of tungiasis diseases," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Abidemi, Afeez & Ackora-Prah, Joseph & Fatoyinbo, Hammed Olawale & Asamoah, Joshua Kiddy K., 2022. "Lyapunov stability analysis and optimization measures for a dengue disease transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    5. Abidemi, Afeez & Owolabi, Kolade M. & Pindza, Edson, 2022. "Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    6. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Liu, Xuan & Ullah, Saif & Alshehri, Ahmed & Altanji, Mohamed, 2021. "Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    9. Li, Tingting & Guo, Youming, 2022. "Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    10. Boudaoui, Ahmed & El hadj Moussa, Yacine & Hammouch, Zakia & Ullah, Saif, 2021. "A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Talwar, Manish & Talwar, Shalini & Kaur, Puneet & Tripathy, Naliniprava & Dhir, Amandeep, 2021. "Has financial attitude impacted the trading activity of retail investors during the COVID-19 pandemic?," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    12. Arielle Kaim & Eli Jaffe & Maya Siman-Tov & Ella Khairish & Bruria Adini, 2020. "Impact of a Brief Educational Intervention on Knowledge, Perceived Knowledge, Perceived Safety, and Resilience of the Public During COVID-19 Crisis," IJERPH, MDPI, vol. 17(16), pages 1-14, August.
    13. Anirudh Shingal & Prachi Agarwal, 2020. "How did trade in GVC-based products respond to previous health shocks? Lessons for COVID-19," RSCAS Working Papers 2020/68, European University Institute.
    14. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    15. Huan Wang & Sarah‐Eve Dill & Huan Zhou & Yue Ma & Hao Xue & Sean Sylvia & Kumi Smith & Matthew Boswell & Alexis Medina & Prashant Loyalka & Cody Abby & Dimitris Friesen & Nathan Rose & Yian Guo & Scot, 2021. "Health, economic, and social implications of COVID‐19 for China's rural population," Agricultural Economics, International Association of Agricultural Economists, vol. 52(3), pages 495-504, May.
    16. Torsten Thalheim & Tyll Krüger & Jörg Galle, 2022. "Indirect Virus Transmission via Fomites Can Counteract Lock-Down Effectiveness," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    17. Xue-Jing Liu & Gustavo S. Mesch, 2020. "The Adoption of Preventive Behaviors during the COVID-19 Pandemic in China and Israel," IJERPH, MDPI, vol. 17(19), pages 1-18, September.
    18. Sofia Pappa & Joshua Barnett & Ines Berges & Nikolaos Sakkas, 2021. "Tired, Worried and Burned Out, but Still Resilient: A Cross-Sectional Study of Mental Health Workers in the UK during the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(9), pages 1-14, April.
    19. Sharon, Teitler Regev & Shahrabani, Shosh, 2021. "Health precautions while traveling after COVID-19," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 68-73.
    20. Arora, Varun & Chakravarty, Sujoy & Kapoor, Hansika & Mukherjee, Shagata & Roy, Shubhabrata & Tagat, Anirudh, 2023. "No going back: COVID-19 disease threat perception and male migrants' willingness to return to work in India," Journal of Economic Behavior & Organization, Elsevier, vol. 209(C), pages 533-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.