IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920303453.html
   My bibliography  Save this article

Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models

Author

Listed:
  • Torrealba-Rodriguez, O.
  • Conde-Gutiérrez, R.A.
  • Hernández-Javier, A.L.

Abstract

This work presents the modeling and prediction of cases of COVID-19 infection in Mexico through mathematical and computational models using only the confirmed cases provided by the daily technical report COVID-19 MEXICO until May 8th. The mathematical models: Gompertz and Logistic, as well as the computational model: Artificial Neural Network were applied to carry out the modeling of the number of cases of COVID-19 infection from February 27th to May 8th. The results show a good fit between the observed data and those obtained by the Gompertz, Logistic and Artificial Neural Networks models with an R2 of 0.9998, 0.9996, 0.9999, respectively. The same mathematical models and inverse Artificial Neural Network were applied to predict the number of cases of COVID-19 infection from May 9th to 16th in order to analyze tendencies and extrapolate the projection until the end of the epidemic. The Gompertz model predicts a total of 47,576 cases, the Logistic model a total of 42,131 cases, and the inverse artificial neural network model a total of 44,245 as of May 16th. Finally, to predict the total number of COVID-19 infected until the end of the epidemic, the Gompertz, Logistic and inverse Artificial Neural Network model were used, predicting 469,917, 59,470 and 70,714 cases, respectively.

Suggested Citation

  • Torrealba-Rodriguez, O. & Conde-Gutiérrez, R.A. & Hernández-Javier, A.L., 2020. "Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303453
    DOI: 10.1016/j.chaos.2020.109946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
    3. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ullah, Saif & Khan, Muhammad Altaf, 2020. "Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Duan, Huiming & Nie, Weige, 2022. "A novel grey model based on Susceptible Infected Recovered Model: A case study of COVD-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    4. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Fernando Alcántara-López & Carlos Fuentes & Carlos Chávez & Fernando Brambila-Paz & Antonio Quevedo, 2021. "Fractional Growth Model Applied to COVID-19 Data," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    9. Fernando Alcántara-López & Carlos Fuentes & Carlos Chávez & Jesús López-Estrada & Fernando Brambila-Paz, 2022. "Fractional Growth Model with Delay for Recurrent Outbreaks Applied to COVID-19 Data," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    10. Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Michał Wieczorek & Jakub Siłka & Dawid Połap & Marcin Woźniak & Robertas Damaševičius, 2020. "Real-time neural network based predictor for cov19 virus spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
    3. Wieczorek, Michał & Siłka, Jakub & Woźniak, Marcin, 2020. "Neural network powered COVID-19 spread forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Mohammad Amin Hariri-Ardebili, 2020. "Living in a Multi-Risk Chaotic Condition: Pandemic, Natural Hazards and Complex Emergencies," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    5. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    6. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Fang, Da & Guo, Yan, 2022. "Flow of goods to the shock of COVID-19 and toll-free highway policy: Evidence from logistics data in China," Research in Transportation Economics, Elsevier, vol. 93(C).
    8. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    9. Hongqin Tang & Jianping Zhu & Nan Li & Weipeng Wu, 2024. "Impact of Enterprise Supply Chain Digitalization on Cost of Debt: A Four-Flows Perspective Analysis Using Explainable Machine Learning Methodology," Sustainability, MDPI, vol. 16(19), pages 1-27, October.
    10. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    11. Chumasande Lalendle & Leila Goedhals-Gerber & Joubert van Eeden, 2021. "A Monitoring and Evaluation Sustainability Framework for Road Freight Transporters in South Africa," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    12. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    13. Li, Haojie & Zhang, Yingheng & Zhu, Manman & Ren, Gang, 2021. "Impacts of COVID-19 on the usage of public bicycle share in London," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 140-155.
    14. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    15. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Lazebnik, Teddy & Shami, Labib & Bunimovich-Mendrazitsky, Svetlana, 2023. "Intervention policy influence on the effect of epidemiological crisis on industry-level production through input–output networks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    18. Margherita, Alessandro & Elia, Gianluca & Klein, Mark, 2021. "Managing the COVID-19 emergency: A coordination framework to enhance response practices and actions," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    19. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    20. Sinha, Priyank & Kumar, Sameer & Chandra, Charu, 2023. "Strategies for ensuring required service level for COVID-19 herd immunity in Indian vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 304(1), pages 339-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.