IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v609y2023ics0378437122009414.html
   My bibliography  Save this article

Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission

Author

Listed:
  • Arshad, Sadia
  • Siddique, Imran
  • Nawaz, Fariha
  • Shaheen, Aqila
  • Khurshid, Hina

Abstract

To achieve the aim of immediately halting spread of COVID-19 it is essential to know the dynamic behavior of the virus of intensive level of replication. Simply analyzing experimental data to learn about this disease consumes a lot of effort and cost. Mathematical models may be able to assist in this regard. Through integrating the mathematical frameworks with the accessible disease data it will be useful and outlay to comprehend the primary components involved in the spreading of COVID-19. There are so many techniques to formulate the impact of disease on the population mathematically, including deterministic modeling, stochastic modeling or fractional order modeling etc. Fractional derivative modeling is one of the essential techniques for analyzing real-world issues and making accurate assessments of situations. In this paper, a fractional order epidemic model that represents the transmission of COVID-19 using seven compartments of population susceptible, exposed, infective, recovered, the quarantine population, recovered–exposed, and dead population is provided. The fractional order derivative is considered in the Caputo sense. In order to determine the epidemic forecast and persistence, we calculate the reproduction number R0. Applying fixed point theory, the existence and uniqueness of the solutions of fractional order derivative have been studied . Moreover, we implement the generalized Adams–Bashforth–Moulton method to get an approximate solution of the fractional-order COVID-19 model. Finally, numerical result and an outstanding graphic simulation are presented.

Suggested Citation

  • Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
  • Handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009414
    DOI: 10.1016/j.physa.2022.128383
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122009414
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qureshi, Sania, 2020. "Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 151-165.
    2. Choujun Zhan & Chi K Tse & Yuxia Fu & Zhikang Lai & Haijun Zhang, 2020. "Modeling and prediction of the 2019 coronavirus disease spreading in China incorporating human migration data," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    3. Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Torrealba-Rodriguez, O. & Conde-Gutiérrez, R.A. & Hernández-Javier, A.L., 2020. "Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    6. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Fredj, Haifa Ben & Chérif, Farouk, 2020. "Novel Corona virus disease infection in Tunisia: Mathematical model and the impact of the quarantine strategy," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. Günerhan, Hatıra & Dutta, Hemen & Dokuyucu, Mustafa Ali & Adel, Waleed, 2020. "Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Ahmad, Shabir & Ullah, Aman & Al-Mdallal, Qasem M. & Khan, Hasib & Shah, Kamal & Khan, Aziz, 2020. "Fractional order mathematical modeling of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    15. Gupta, Vedika & Jain, Nikita & Katariya, Piyush & Kumar, Adarsh & Mohan, Senthilkumar & Ahmadian, Ali & Ferrara, Massimiliano, 2021. "An Emotion Care Model using Multimodal Textual Analysis on COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Koutou, Ousmane & Diabaté, Abou Bakari & Sangaré, Boureima, 2023. "Mathematical analysis of the impact of the media coverage in mitigating the outbreak of COVID-19," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 600-618.
    5. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Samad Noeiaghdam & Sanda Micula & Juan J. Nieto, 2021. "A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library," Mathematics, MDPI, vol. 9(12), pages 1-26, June.
    9. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Abidemi, Afeez & Owolabi, Kolade M. & Pindza, Edson, 2022. "Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    14. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    17. Ullah, Saif & Khan, Muhammad Altaf, 2020. "Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Gandzha, I.S. & Kliushnichenko, O.V. & Lukyanets, S.P., 2021. "Modeling and controlling the spread of epidemic with various social and economic scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Paul, James Nicodemus & Mbalawata, Isambi Sailon & Mirau, Silas Steven & Masandawa, Lemjini, 2023. "Mathematical modeling of vaccination as a control measure of stress to fight COVID-19 infections," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    20. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.