IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3100-d692634.html
   My bibliography  Save this article

Optimal Control Applied to Vaccination and Testing Policies for COVID-19

Author

Listed:
  • Alberto Olivares

    (Campus de Fuenlabrada, School of Telecommunication Engineering, Universidad Rey Juan Carlos, Camino del Molino 5, 28942 Madrid, Spain
    These authors contributed equally to this work.)

  • Ernesto Staffetti

    (Campus de Fuenlabrada, School of Telecommunication Engineering, Universidad Rey Juan Carlos, Camino del Molino 5, 28942 Madrid, Spain
    These authors contributed equally to this work.)

Abstract

In this paper, several policies for controlling the spread of SARS-CoV-2 are determined under the assumption that a limited number of effective COVID-19 vaccines and tests are available. These policies are calculated for different vaccination scenarios representing vaccine supply and administration restrictions, plus their impacts on the disease transmission are analyzed. The policies are determined by solving optimal control problems of a compartmental epidemic model, in which the control variables are the vaccination rate and the testing rate for the detection of asymptomatic infected people. A combination of the proportion of threatened and deceased people together with the cost of vaccination of susceptible people, and detection of asymptomatic infected people, is taken as the objective functional to be minimized, whereas different types of algebraic constraints are considered to represent several vaccination scenarios. A direct transcription method is employed to solve these optimal control problems. More specifically, the Hermite–Simpson collocation technique is used. The results of the numerical experiments show that the optimal control approach offers healthcare system managers a helpful resource for designing vaccination programs and testing plans to prevent COVID-19 transmission.

Suggested Citation

  • Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3100-:d:692634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Ullah, Saif & Khan, Muhammad Altaf, 2020. "Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Edilson F Arruda & Shyam S Das & Claudia M Dias & Dayse H Pastore, 2021. "Modelling and optimal control of multi strain epidemics, with application to COVID-19," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    4. Brugnago, Eduardo L. & da Silva, Rafael M. & Manchein, Cesar & Beims, Marcus W., 2020. "How relevant is the decision of containment measures against COVID-19 applied ahead of time?," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Abbasi, Zohreh & Zamani, Iman & Mehra, Amir Hossein Amiri & Shafieirad, Mohsen & Ibeas, Asier, 2020. "Optimal Control Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Haiyue Chen & Benedikt Haus & Paolo Mercorelli, 2021. "Extension of SEIR Compartmental Models for Constructive Lyapunov Control of COVID-19 and Analysis in Terms of Practical Stability," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    7. Kouidere, Abdelfatah & Youssoufi, Lahcen EL & Ferjouchia, Hanane & Balatif, Omar & Rachik, Mostafa, 2021. "Optimal Control of Mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with Cost-effectiveness," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Nabi, Khondoker Nazmoon & Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Projections and fractional dynamics of COVID-19 with optimal control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    10. Malkov, Egor, 2020. "Simulation of coronavirus disease 2019 (COVID-19) scenarios with possibility of reinfection," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Kouidere, Abdelfatah & Kada, Driss & Balatif, Omar & Rachik, Mostafa & Naim, Mouhcine, 2021. "Optimal control approach of a mathematical modeling with multiple delays of the negative impact of delays in applying preventive precautions against the spread of the COVID-19 pandemic with a case stu," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivares, Alberto & Staffetti, Ernesto, 2023. "A statistical moment-based spectral approach to the chance-constrained stochastic optimal control of epidemic models," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Árpád Bűrmen & Tadej Tuma, 2022. "Preface to the Special Issue on “Optimization Theory and Applications”," Mathematics, MDPI, vol. 10(24), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Olivares, Alberto & Staffetti, Ernesto, 2021. "Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Papageorgiou, Vasileios E. & Tsaklidis, George, 2023. "An improved epidemiological-unscented Kalman filter (hybrid SEIHCRDV-UKF) model for the prediction of COVID-19. Application on real-time data," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Ahumada, M. & Ledesma-Araujo, A. & Gordillo, L. & Marín, J.F., 2023. "Mutation and SARS-CoV-2 strain competition under vaccination in a modified SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    9. Caraballo, T. & Settati, A. & Lahrouz, A. & Boutouil, S. & Harchaoui, B., 2024. "On the stochastic threshold of the COVID-19 epidemic model incorporating jump perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    10. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "An Extended SEIR Model with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(6), pages 1-16, March.
    11. Khan, Muhammad Altaf & Atangana, Abdon, 2022. "Mathematical modeling and analysis of COVID-19: A study of new variant Omicron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    12. Castillo, Oscar & Melin, Patricia, 2021. "A new fuzzy fractal control approach of non-linear dynamic systems: The case of controlling the COVID-19 pandemics," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Ojo, Mayowa M. & Benson, Temitope O. & Peter, Olumuyiwa James & Goufo, Emile Franc Doungmo, 2022. "Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    14. Manuel De la Sen & Santiago Alonso-Quesada & Asier Ibeas, 2021. "On a Discrete SEIR Epidemic Model with Exposed Infectivity, Feedback Vaccination and Partial Delayed Re-Susceptibility," Mathematics, MDPI, vol. 9(5), pages 1-32, March.
    15. Ullah, Mohammad Sharif & Higazy, M. & Ariful Kabir, K.M., 2022. "Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Kumar, Pushpendra & Erturk, Vedat Suat & Murillo-Arcila, Marina, 2021. "A complex fractional mathematical modeling for the love story of Layla and Majnun," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    17. Mohamed M. Mousa & Fahad Alsharari, 2021. "A Comparative Numerical Study and Stability Analysis for a Fractional-Order SIR Model of Childhood Diseases," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    18. Kouidere, Abdelfatah & Balatif, Omar & Rachik, Mostafa, 2021. "Analysis and optimal control of a mathematical modeling of the spread of African swine fever virus with a case study of South Korea and cost-effectiveness," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    19. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    20. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3100-:d:692634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.