IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1484-d1391829.html
   My bibliography  Save this article

Optimal Control for an Epidemic Model of COVID-19 with Time-Varying Parameters

Author

Listed:
  • Yiheng Li

    (Department of Mathematics, Shanghai University, Shanghai 200444, China)

Abstract

The coronavirus disease 2019 (COVID-19) pandemic disrupted public health and economies worldwide. In this paper, we investigate an optimal control problem to simultaneously minimize the epidemic size and control costs associated with intervention strategies based on official data. Considering people with undetected infections, we establish a control system of COVID-19 with time-varying parameters. To estimate these parameters, a parameter identification scheme is adopted and a mixed algorithm is constructed. Moreover, we present an optimal control problem with two objectives that involve the newly increased number of infected individuals and the control costs. A numerical scheme is conducted, simulating the epidemic data pertaining to Shanghai during the period of 2022, caused by the Omicron variant. Coefficient combinations of the objectives are obtained, and the optimal control measures for different infection peaks are indicated. The numerical results suggest that the identification variables obtained by using the constructed mixed algorithm to solve the parameter identification problem are feasible. Optimal control measures for different epidemic peaks can serve as references for decision-makers.

Suggested Citation

  • Yiheng Li, 2024. "Optimal Control for an Epidemic Model of COVID-19 with Time-Varying Parameters," Mathematics, MDPI, vol. 12(10), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1484-:d:1391829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullah, Saif & Khan, Muhammad Altaf, 2020. "Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Zhang, Ge & Li, Zhiming & Din, Anwarud & Chen, Tao, 2024. "Dynamic analysis and optimal control of a stochastic COVID-19 model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 498-517.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Torsten Thalheim & Tyll Krüger & Jörg Galle, 2022. "Indirect Virus Transmission via Fomites Can Counteract Lock-Down Effectiveness," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    3. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    4. Li, Tingting & Guo, Youming, 2022. "Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Altun, Ishak & Sahin, Hakan & Aslantas, Mustafa, 2021. "A new approach to fractals via best proximity point," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Tingting Li & Youming Guo, 2022. "Optimal Control Strategy of an Online Game Addiction Model with Incomplete Recovery," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 780-807, December.
    7. Khan, Muhammad Altaf & Atangana, Abdon, 2022. "Mathematical modeling and analysis of COVID-19: A study of new variant Omicron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    8. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    9. Ojo, Mayowa M. & Benson, Temitope O. & Peter, Olumuyiwa James & Goufo, Emile Franc Doungmo, 2022. "Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Boudaoui, Ahmed & El hadj Moussa, Yacine & Hammouch, Zakia & Ullah, Saif, 2021. "A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Ali, Javaid & Raza, Ali & Ahmed, Nauman & Ahmadian, Ali & Rafiq, Muhammad & Ferrara, Massimiliano, 2021. "Evolutionary optimized Padé approximation scheme for analysis of covid-19 model with crowding effect," Operations Research Perspectives, Elsevier, vol. 8(C).
    12. Asamoah, Joshua Kiddy K. & Jin, Zhen & Sun, Gui-Quan & Seidu, Baba & Yankson, Ernest & Abidemi, Afeez & Oduro, F.T. & Moore, Stephen E. & Okyere, Eric, 2021. "Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Juhui Yan & Wanqin Wu & Qing Miao & Xuewen Tan, 2024. "Global Dynamics and Optimal Control of a Fractional-Order SIV Epidemic Model with Nonmonotonic Occurrence Rate," Mathematics, MDPI, vol. 12(17), pages 1-21, September.
    14. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Krista Danielle S. Yu & Kathleen B. Aviso & Joost R. Santos & Raymond R. Tan, 2020. "The Economic Impact of Lockdowns: A Persistent Inoperability Input-Output Approach," Economies, MDPI, vol. 8(4), pages 1-14, December.
    16. Md Arif Billah & Md Mamun Miah & Md Nuruzzaman Khan, 2020. "Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
    17. Siphokazi Princess Gatyeni & Faraimunashe Chirove & Farai Nyabadza, 2022. "Modelling the Potential Impact of Stigma on the Transmission Dynamics of COVID-19 in South Africa," Mathematics, MDPI, vol. 10(18), pages 1-23, September.
    18. Liu, Xuan & Ullah, Saif & Alshehri, Ahmed & Altanji, Mohamed, 2021. "Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    19. Sara K Al-Harbi & Salma M Al-Tuwairqi, 2022. "Modeling the effect of lockdown and social distancing on the spread of COVID-19 in Saudi Arabia," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-40, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1484-:d:1391829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.