IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3253-d909174.html
   My bibliography  Save this article

Modelling the Potential Impact of Stigma on the Transmission Dynamics of COVID-19 in South Africa

Author

Listed:
  • Siphokazi Princess Gatyeni

    (Mathematics and Applied Mathematics Department, University of Johannesburg, Johannesburg 2092, South Africa)

  • Faraimunashe Chirove

    (Mathematics and Applied Mathematics Department, University of Johannesburg, Johannesburg 2092, South Africa)

  • Farai Nyabadza

    (Mathematics and Applied Mathematics Department, University of Johannesburg, Johannesburg 2092, South Africa)

Abstract

The COVID-19 pandemic continues to be a problem in South Africa. Individuals affected and infected by the disease suffer from stigma resulting in increased COVID-19 infections. In this paper, we developed a mathematical model to assess the effects of stigma on COVID-19 in South Africa, using low, moderate, and high stigma regimes in the population. The mathematical model was analysed and the basic reproduction number, R 0 , of the COVID-19 model with stigma was determined. The model was then fitted to data of the four COVID-19 waves for the new daily infected cases, and the estimated parameter values from different waves are presented. The effects of stigma on COVID-19 waves were examined using the four stigma regimes (high, moderate, low, and stigma-free regimes). Our results revealed that stigma is instrumental in the increase in the number of COVID-19 infections. It is also a significant contributor to sustaining COVID-19 in the population and probably in other infectious diseases such as HIV/AIDS and sexually transmitted diseases. The results obtained can influence policy directions with respect to stigma and its impact on the transmission dynamics of diseases.

Suggested Citation

  • Siphokazi Princess Gatyeni & Faraimunashe Chirove & Farai Nyabadza, 2022. "Modelling the Potential Impact of Stigma on the Transmission Dynamics of COVID-19 in South Africa," Mathematics, MDPI, vol. 10(18), pages 1-23, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3253-:d:909174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullah, Saif & Khan, Muhammad Altaf, 2020. "Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Sintunavarat, Wutiphol & Turab, Ali, 2022. "Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 65-84.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiraporn Lamwong & Puntani Pongsumpun & I-Ming Tang & Napasool Wongvanich, 2022. "Vaccination’s Role in Combating the Omicron Variant Outbreak in Thailand: An Optimal Control Approach," Mathematics, MDPI, vol. 10(20), pages 1-29, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Torsten Thalheim & Tyll Krüger & Jörg Galle, 2022. "Indirect Virus Transmission via Fomites Can Counteract Lock-Down Effectiveness," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    3. Silvério Rosa & Delfim F. M. Torres, 2023. "Numerical Fractional Optimal Control of Respiratory Syncytial Virus Infection in Octave/MATLAB," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    4. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    5. McSylvester Ejighikeme Omaba & Hamdan Al Sulaimani, 2022. "On Caputo–Katugampola Fractional Stochastic Differential Equation," Mathematics, MDPI, vol. 10(12), pages 1-12, June.
    6. Li, Tingting & Guo, Youming, 2022. "Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Altun, Ishak & Sahin, Hakan & Aslantas, Mustafa, 2021. "A new approach to fractals via best proximity point," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Askar Akaev & Alexander I. Zvyagintsev & Askar Sarygulov & Tessaleno Devezas & Andrea Tick & Yuri Ichkitidze, 2022. "Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    9. Prem Kumar, R. & Santra, P.K. & Mahapatra, G.S., 2023. "Global stability and analysing the sensitivity of parameters of a multiple-susceptible population model of SARS-CoV-2 emphasising vaccination drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 741-766.
    10. Tingting Li & Youming Guo, 2022. "Optimal Control Strategy of an Online Game Addiction Model with Incomplete Recovery," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 780-807, December.
    11. Khan, Muhammad Altaf & Atangana, Abdon, 2022. "Mathematical modeling and analysis of COVID-19: A study of new variant Omicron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    12. Alberto Olivares & Ernesto Staffetti, 2021. "Optimal Control Applied to Vaccination and Testing Policies for COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    13. Ojo, Mayowa M. & Benson, Temitope O. & Peter, Olumuyiwa James & Goufo, Emile Franc Doungmo, 2022. "Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    14. Boudaoui, Ahmed & El hadj Moussa, Yacine & Hammouch, Zakia & Ullah, Saif, 2021. "A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Ali, Javaid & Raza, Ali & Ahmed, Nauman & Ahmadian, Ali & Rafiq, Muhammad & Ferrara, Massimiliano, 2021. "Evolutionary optimized Padé approximation scheme for analysis of covid-19 model with crowding effect," Operations Research Perspectives, Elsevier, vol. 8(C).
    16. Asamoah, Joshua Kiddy K. & Jin, Zhen & Sun, Gui-Quan & Seidu, Baba & Yankson, Ernest & Abidemi, Afeez & Oduro, F.T. & Moore, Stephen E. & Okyere, Eric, 2021. "Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    17. Yaping Wang & Lin Hu & Linfei Nie, 2022. "Dynamics of a Hybrid HIV/AIDS Model with Age-Structured, Self-Protection and Media Coverage," Mathematics, MDPI, vol. 11(1), pages 1-27, December.
    18. Azhar Iqbal Kashif Butt & Saira Batool & Muhammad Imran & Muneerah Al Nuwairan, 2023. "Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies," Mathematics, MDPI, vol. 11(9), pages 1-29, April.
    19. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Yiheng Li, 2024. "Optimal Control for an Epidemic Model of COVID-19 with Time-Varying Parameters," Mathematics, MDPI, vol. 12(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3253-:d:909174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.