Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.110058
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yousaf, Muhammad & Zahir, Samiha & Riaz, Muhammad & Hussain, Sardar Muhammad & Shah, Kamal, 2020. "Statistical analysis of forecasting COVID-19 for upcoming month in Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
- Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
- Chang, G.W. & Lu, H.J. & Chang, Y.R. & Lee, Y.D., 2017. "An improved neural network-based approach for short-term wind speed and power forecast," Renewable Energy, Elsevier, vol. 105(C), pages 301-311.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gaetano Perone, 2022. "Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries," Econometrics, MDPI, vol. 10(2), pages 1-23, April.
- Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Munir Ahmad & Nadeem Akhtar & Gul Jabeen & Muhammad Irfan & Muhammad Khalid Anser & Haitao Wu & Cem Işık, 2021. "Intention-Based Critical Factors Affecting Willingness to Adopt Novel Coronavirus Prevention in Pakistan: Implications for Future Pandemics," IJERPH, MDPI, vol. 18(11), pages 1-28, June.
- Rasheed, Jawad & Jamil, Akhtar & Hameed, Alaa Ali & Aftab, Usman & Aftab, Javaria & Shah, Syed Attique & Draheim, Dirk, 2020. "A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
- Otunuga, Olusegun Michael, 2021. "Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Hasin Md. Muhtasim Taqi & Humaira Nafisa Ahmed & Sumit Paul & Maryam Garshasbi & Syed Mithun Ali & Golam Kabir & Sanjoy Kumar Paul, 2020. "Strategies to Manage the Impacts of the COVID-19 Pandemic in the Supply Chain: Implications for Improving Economic and Social Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
- Saeed, Naima & Nguyen, Su & Cullinane, Kevin & Gekara, Victor & Chhetri, Prem, 2023. "Forecasting container freight rates using the Prophet forecasting method," Transport Policy, Elsevier, vol. 133(C), pages 86-107.
- Matvey Pavlyutin & Marina Samoyavcheva & Rasul Kochkarov & Ekaterina Pleshakova & Sergey Korchagin & Timur Gataullin & Petr Nikitin & Mohiniso Hidirova, 2022. "COVID-19 Spread Forecasting, Mathematical Methods vs. Machine Learning, Moscow Case," Mathematics, MDPI, vol. 10(2), pages 1-19, January.
- Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
- Paul, Ayan & Reja, Selim & Kundu, Sayani & Bhattacharya, Sabyasachi, 2021. "COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Frederik Seeup Hass & Jamal Jokar Arsanjani, 2021. "The Geography of the Covid-19 Pandemic: A Data-Driven Approach to Exploring Geographical Driving Forces," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
- Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
- Kim-Hung Pho & Michael McAleer, 2021. "Specification and Estimation of a Logistic Function, with Applications in the Sciences and Social Sciences," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(2), pages 74-104, June.
- Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
- Ben R. Craig & Tom Phelan & Jan-Peter Siedlarek & Jared Steinberg, 2021. "Two Approaches to Predicting the Path of the COVID-19 Pandemic: Is One Better?," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2021(10), pages 1-8, April.
- Se Yoon Lee, 2022. "Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications," Mathematics, MDPI, vol. 10(6), pages 1-51, March.
- Pawan Kumar Singh & Anushka Chouhan & Rajiv Kumar Bhatt & Ravi Kiran & Ansari Saleh Ahmar, 2022. "Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2023-2033, August.
- Askar Akaev & Alexander I. Zvyagintsev & Askar Sarygulov & Tessaleno Devezas & Andrea Tick & Yuri Ichkitidze, 2022. "Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
- Md Rashidul Hasan & Muntasir A Kabir & Rezoan A Shuvro & Pankaz Das, 2022. "A Comparative Study on Forecasting of Retail Sales," Papers 2203.06848, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
- Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
- Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
- Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
- Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Hannah Jessie Rani R. & Aruldoss Albert Victoire T., 2018. "Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-35, May.
- Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
- Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
- Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
- Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
- Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
- Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
- Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
- Yinghui Huang & Hui Liu & Lin Zhang & Shen Li & Weijun Wang & Zhihong Ren & Zongkui Zhou & Xueyao Ma, 2021. "The Psychological and Behavioral Patterns of Online Psychological Help-Seekers before and during COVID-19 Pandemic: A Text Mining-Based Longitudinal Ecological Study," IJERPH, MDPI, vol. 18(21), pages 1-19, November.
- Oh, Eunsung & Son, Sung-Yong, 2018. "Energy-storage system sizing and operation strategies based on discrete Fourier transform for reliable wind-power generation," Renewable Energy, Elsevier, vol. 116(PA), pages 786-794.
- Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
More about this item
Keywords
Coronavirus; COVID-19; Epidemic; Logistic; FbProphet; Modeling; Forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.