IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i6p2803-d514281.html
   My bibliography  Save this article

The Geography of the Covid-19 Pandemic: A Data-Driven Approach to Exploring Geographical Driving Forces

Author

Listed:
  • Frederik Seeup Hass

    (Department of Planning, Geography and Surveying, Aalborg University Copenhagen, A.C. Meyers Vænge 15, 2450 Copenhagen, Denmark)

  • Jamal Jokar Arsanjani

    (Department of Planning, Geography and Surveying, Aalborg University Copenhagen, A.C. Meyers Vænge 15, 2450 Copenhagen, Denmark)

Abstract

The Covid-19 pandemic emerged and evolved so quickly that societies were not able to respond quickly enough, mainly due to the nature of the Covid-19 virus’ rate of spread and also the largely open societies that we live in. While we have been willingly moving towards open societies and reducing movement barriers, there is a need to be prepared for minimizing the openness of society on occasions such as large pandemics, which are low probability events with massive impacts. Certainly, similar to many phenomena, the Covid-19 pandemic has shown us its own geography presenting its emergence and evolving patterns as well as taking advantage of our geographical settings for escalating its spread. Hence, this study aims at presenting a data-driven approach for exploring the spatio-temporal patterns of the pandemic over a regional scale, i.e., Europe and a country scale, i.e., Denmark, and also what geographical variables potentially contribute to expediting its spread. We used official regional infection rates, points of interest, temperature and air pollution data for monitoring the pandemic’s spread across Europe and also applied geospatial methods such as spatial autocorrelation and space-time autocorrelation to extract relevant indicators that could explain the dynamics of the pandemic. Furthermore, we applied statistical methods, e.g., ordinary least squares, geographically weighted regression, as well as machine learning methods, e.g., random forest for exploring the potential correlation between the chosen underlying factors and the pandemic spread. Our findings indicate that population density, amenities such as cafes and bars, and pollution levels are the most influential explanatory variables while pollution levels can be explicitly used to monitor lockdown measures and infection rates at country level. The choice of data and methods used in this study along with the achieved results and presented discussions can empower health authorities and decision makers with an interactive decision support tool, which can be useful for imposing geographically varying lockdowns and protectives measures using historical data.

Suggested Citation

  • Frederik Seeup Hass & Jamal Jokar Arsanjani, 2021. "The Geography of the Covid-19 Pandemic: A Data-Driven Approach to Exploring Geographical Driving Forces," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:2803-:d:514281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/6/2803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/6/2803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    2. Wang, Peipei & Zheng, Xinqi & Li, Jiayang & Zhu, Bangren, 2020. "Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Malki, Zohair & Atlam, El-Sayed & Hassanien, Aboul Ella & Dagnew, Guesh & Elhosseini, Mostafa A. & Gad, Ibrahim, 2020. "Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Sachiko Kodera & Essam A. Rashed & Akimasa Hirata, 2020. "Correlation between COVID-19 Morbidity and Mortality Rates in Japan and Local Population Density, Temperature, and Absolute Humidity," IJERPH, MDPI, vol. 17(15), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. František Petrovič & Katarína Vilinová & Radovan Hilbert, 2021. "Analysis of Hazard Rate of Municipalities in Slovakia in Terms of COVID-19," IJERPH, MDPI, vol. 18(17), pages 1-12, August.
    2. Andrés Felipe Valderrama Pineda & Iva Ridjan Skov & Hanaa Dahy & Jamal Jokar Arsanjani & Ida Maria Bonnevie & Tom Børsen & Maurizio Teli, 2024. "Sustainability Meets Information Technologies: Recent Developments and Future Perspectives," Sustainability, MDPI, vol. 16(11), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasheed, Jawad & Jamil, Akhtar & Hameed, Alaa Ali & Aftab, Usman & Aftab, Javaria & Shah, Syed Attique & Draheim, Dirk, 2020. "A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
    3. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    6. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
    7. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    8. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    9. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    10. Antonio Diez de los Rios, 2022. "A macroeconomic model of an epidemic with silent transmission and endogenous self‐isolation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 581-625, February.
    11. Elisa Giannone & Nuno Paixao & Xinle Pang, 2021. "The Geography of Pandemic Containment," Staff Working Papers 21-26, Bank of Canada.
    12. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    14. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    15. Christos Nicolaides & Demetris Avraam & Luis Cueto‐Felgueroso & Marta C. González & Ruben Juanes, 2020. "Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 723-740, April.
    16. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    17. Mateusz Ciski & Krzysztof Rząsa, 2023. "Multiscale Geographically Weighted Regression in the Investigation of Local COVID-19 Anomalies Based on Population Age Structure in Poland," IJERPH, MDPI, vol. 20(10), pages 1-23, May.
    18. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    19. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    20. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:2803-:d:514281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.