IDEAS home Printed from https://ideas.repec.org/a/aag/wpaper/v25y2021i2p74-104.html
   My bibliography  Save this article

Specification and Estimation of a Logistic Function, with Applications in the Sciences and Social Sciences

Author

Listed:
  • Kim-Hung Pho

    (Fractional Calculus, Optimization and Algebra Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • Michael McAleer

    (Department of Finance, College of Management, Department of Bioinformatics and Medical Engineering, College of Information and Electrical Engineering, Asia University, Taiwan)

Abstract

This research makes a theoretical contribution by providing straightforward and coherent derivation of a logistic model, and then estimating the parameters of the model with a fishing data set. The logistic model is frequently considered as a convenient regression model to find the associations between a binary outcome variable and several covariates. This is also a model that has numerous practical applications, as in banking, engineering, social sciences, medical research and biostatistics. In the paper, we briefly summarize the function and estimating equation of the logistic model. We next investigate the large sample properties of this model under some regularity conditions. We then provide a simulation study of the work. A factual application of the logistic model is illustrated using a fishing data set. The results have consilience with practice. It also shows that this is a reliable model to maximize the number of fish while fishing. Finally, some applications in decision sciences, some concluding remarks, and future research directions are discussed.

Suggested Citation

  • Kim-Hung Pho & Michael McAleer, 2021. "Specification and Estimation of a Logistic Function, with Applications in the Sciences and Social Sciences," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(2), pages 74-104, June.
  • Handle: RePEc:aag:wpaper:v:25:y:2021:i:2:p:74-104
    as

    Download full text from publisher

    File URL: https://iads.site/Specification-and-Estimation-of-a-Logistic-Function-with-Applications-in-the-Sciences-and-Social-Sciences
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taha Zaghdoudi, 2013. "Bank Failure Prediction with Logistic Regression," International Journal of Economics and Financial Issues, Econjournals, vol. 3(2), pages 537-543.
    2. Arvind Shrivastava & Kuldeep Kumar & Nitin Kumar, 2018. "Business Distress Prediction Using Bayesian Logistic Model for Indian Firms," Risks, MDPI, vol. 6(4), pages 1-15, October.
    3. Hsieh, S.H. & Lee, S.M. & Shen, P.S., 2009. "Semiparametric analysis of randomized response data with missing covariates in logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2673-2692, May.
    4. Hsieh, Shu-Hui & Li, Chin-Shang & Lee, Shen-Ming, 2013. "Logistic regression with outcome and covariates missing separately or simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 32-54.
    5. Pei-Chieh Chang & Kim-Hung Pho & Shen-Ming Lee & Chin-Shang Li, 2021. "Estimation of parameters of logistic regression for two-stage randomized response technique," Computational Statistics, Springer, vol. 36(3), pages 2111-2133, September.
    6. Wang, Peipei & Zheng, Xinqi & Li, Jiayang & Zhu, Bangren, 2020. "Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Shen-Ming Lee & Chin-Shang Li & Shu-Hui Hsieh & Li-Hui Huang, 2012. "Semiparametric estimation of logistic regression model with missing covariates and outcome," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 621-653, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massoud Moslehpour & Shin Hung Pan & Aviral Kumar Tiwari & Wing Keung Wong, 2021. "Editorial in Honour of Professor Michael McAleer," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(4), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu-Hui Hsieh & Shen-Ming Lee & Chin-Shang Li & Su-Hao Tu, 2016. "An alternative to unrelated randomized response techniques with logistic regression analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 601-621, November.
    2. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    3. Shen-Ming Lee & Phuoc-Loc Tran & Truong-Nhat Le & Chin-Shang Li, 2023. "Prediction of a Sensitive Feature under Indirect Questioning via Warner’s Randomized Response Technique and Latent Class Model," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    4. Truong-Nhat Le & Shen-Ming Lee & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Randomized Response Techniques: A Systematic Review from the Pioneering Work of Warner (1965) to the Present," Mathematics, MDPI, vol. 11(7), pages 1-26, April.
    5. Shen-Ming Lee & Truong-Nhat Le & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods," Computational Statistics, Springer, vol. 38(2), pages 899-934, June.
    6. Shen‐Ming Lee & Truong‐Nhat Le & Phuoc‐Loc Tran & Chin‐Shang Li, 2022. "Investigating the association of a sensitive attribute with a random variable using the Christofides generalised randomised response design and Bayesian methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1471-1502, November.
    7. Buu-Chau Truong & Nguyen Van Thuan & Nguyen Huu Hau & Michael McAleer, 2019. "Applications of the Newton-Raphson Method in Decision Sciences and Education," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(4), pages 52-80, December.
    8. T. Martin Lukusa & Shen-Ming Lee & Chin-Shang Li, 2016. "Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(4), pages 457-483, May.
    9. Gaetano Perone, 2022. "Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries," Econometrics, MDPI, vol. 10(2), pages 1-23, April.
    10. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Munir Ahmad & Nadeem Akhtar & Gul Jabeen & Muhammad Irfan & Muhammad Khalid Anser & Haitao Wu & Cem Işık, 2021. "Intention-Based Critical Factors Affecting Willingness to Adopt Novel Coronavirus Prevention in Pakistan: Implications for Future Pandemics," IJERPH, MDPI, vol. 18(11), pages 1-28, June.
    12. Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
    13. Hasin Md. Muhtasim Taqi & Humaira Nafisa Ahmed & Sumit Paul & Maryam Garshasbi & Syed Mithun Ali & Golam Kabir & Sanjoy Kumar Paul, 2020. "Strategies to Manage the Impacts of the COVID-19 Pandemic in the Supply Chain: Implications for Improving Economic and Social Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    14. Matvey Pavlyutin & Marina Samoyavcheva & Rasul Kochkarov & Ekaterina Pleshakova & Sergey Korchagin & Timur Gataullin & Petr Nikitin & Mohiniso Hidirova, 2022. "COVID-19 Spread Forecasting, Mathematical Methods vs. Machine Learning, Moscow Case," Mathematics, MDPI, vol. 10(2), pages 1-19, January.
    15. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
    16. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Shu-Hui Hsieh & Shen-Ming Lee & Chin-Shang Li, 2022. "A Two-stage Multilevel Randomized Response Technique With Proportional Odds Models and Missing Covariates," Sociological Methods & Research, , vol. 51(1), pages 439-467, February.
    18. Pawan Kumar Singh & Anushka Chouhan & Rajiv Kumar Bhatt & Ravi Kiran & Ansari Saleh Ahmar, 2022. "Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2023-2033, August.
    19. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    20. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.

    More about this item

    Keywords

    Estimation; Logistic; Regression models; Fishing data; Decision Sciences.;
    All these keywords.

    JEL classification:

    • J16 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Gender; Non-labor Discrimination
    • K38 - Law and Economics - - Other Substantive Areas of Law - - - Human Rights Law; Gender Law; Animal Rights Law
    • M14 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Corporate Culture; Diversity; Social Responsibility

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aag:wpaper:v:25:y:2021:i:2:p:74-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vincent Pan (email available below). General contact details of provider: https://edirc.repec.org/data/dfasitw.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.