A Comparative Study on Forecasting of Retail Sales
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Serkan Aras & İpek Deveci Kocakoç & Cigdem Polat, 2017. "Comparative study on retail sales forecasting between single and combination methods," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(5), pages 803-832, September.
- Wang, Peipei & Zheng, Xinqi & Li, Jiayang & Zhu, Bangren, 2020. "Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Essam A. Rashed & Akimasa Hirata, 2021. "One-Year Lesson: Machine Learning Prediction of COVID-19 Positive Cases with Meteorological Data and Mobility Estimate in Japan," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
- Hasin Md. Muhtasim Taqi & Humaira Nafisa Ahmed & Sumit Paul & Maryam Garshasbi & Syed Mithun Ali & Golam Kabir & Sanjoy Kumar Paul, 2020. "Strategies to Manage the Impacts of the COVID-19 Pandemic in the Supply Chain: Implications for Improving Economic and Social Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
- Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
- Pawan Kumar Singh & Anushka Chouhan & Rajiv Kumar Bhatt & Ravi Kiran & Ansari Saleh Ahmar, 2022. "Implementation of the SutteARIMA method to predict short-term cases of stock market and COVID-19 pandemic in USA," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2023-2033, August.
- Saeed, Naima & Nguyen, Su & Cullinane, Kevin & Gekara, Victor & Chhetri, Prem, 2023. "Forecasting container freight rates using the Prophet forecasting method," Transport Policy, Elsevier, vol. 133(C), pages 86-107.
- Peter Kacmary & Andrea Rosova & Marian Sofranko & Peter Bindzar & Janka Saderova & Jan Kovac, 2021. "Creation of Annual Order Forecast for the Production of Beverage Cans—The Case Study," Sustainability, MDPI, vol. 13(15), pages 1-14, July.
- Frederik Seeup Hass & Jamal Jokar Arsanjani, 2021. "The Geography of the Covid-19 Pandemic: A Data-Driven Approach to Exploring Geographical Driving Forces," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
- Kim-Hung Pho & Michael McAleer, 2021. "Specification and Estimation of a Logistic Function, with Applications in the Sciences and Social Sciences," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(2), pages 74-104, June.
- Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Emir Zunic & Kemal Korjenic & Kerim Hodzic & Dzenana Donko, 2020. "Application of Facebook's Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data," Papers 2005.07575, arXiv.org.
- Askar Akaev & Alexander I. Zvyagintsev & Askar Sarygulov & Tessaleno Devezas & Andrea Tick & Yuri Ichkitidze, 2022. "Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
- Gaetano Perone, 2022. "Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries," Econometrics, MDPI, vol. 10(2), pages 1-23, April.
- Munir Ahmad & Nadeem Akhtar & Gul Jabeen & Muhammad Irfan & Muhammad Khalid Anser & Haitao Wu & Cem Işık, 2021. "Intention-Based Critical Factors Affecting Willingness to Adopt Novel Coronavirus Prevention in Pakistan: Implications for Future Pandemics," IJERPH, MDPI, vol. 18(11), pages 1-28, June.
- Matvey Pavlyutin & Marina Samoyavcheva & Rasul Kochkarov & Ekaterina Pleshakova & Sergey Korchagin & Timur Gataullin & Petr Nikitin & Mohiniso Hidirova, 2022. "COVID-19 Spread Forecasting, Mathematical Methods vs. Machine Learning, Moscow Case," Mathematics, MDPI, vol. 10(2), pages 1-19, January.
- Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Chuan Zhang & Yu-Xin Tian & Ling-Wei Fan, 2020. "Improving the Bass model’s predictive power through online reviews, search traffic and macroeconomic data," Annals of Operations Research, Springer, vol. 295(2), pages 881-922, December.
- Otunuga, Olusegun Michael, 2021. "Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Paul, Ayan & Reja, Selim & Kundu, Sayani & Bhattacharya, Sabyasachi, 2021. "COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-05-02 (Big Data)
- NEP-FOR-2022-05-02 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.06848. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.