A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.110337
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Singh, Sarbjit & Parmar, Kulwinder Singh & Makkhan, Sidhu Jitendra Singh & Kaur, Jatinder & Peshoria, Shruti & Kumar, Jatinder, 2020. "Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Toraman, Suat & Alakus, Talha Burak & Turkoglu, Ibrahim, 2020. "Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Yadav, Milind & Perumal, Murukessan & Srinivas, M, 2020. "Analysis on novel coronavirus (COVID-19) using machine learning methods," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Kavadi, Durga Prasad & Patan, Rizwan & Ramachandran, Manikandan & Gandomi, Amir H., 2020. "Partial derivative Nonlinear Global Pandemic Machine Learning prediction of COVID 19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Zeroual, Abdelhafid & Harrou, Fouzi & Dairi, Abdelkader & Sun, Ying, 2020. "Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Altan, Aytaç & Karasu, Seçkin, 2020. "Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Wang, Peipei & Zheng, Xinqi & Li, Jiayang & Zhu, Bangren, 2020. "Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Malki, Zohair & Atlam, El-Sayed & Hassanien, Aboul Ella & Dagnew, Guesh & Elhosseini, Mostafa A. & Gad, Ibrahim, 2020. "Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Melin, Patricia & Monica, Julio Cesar & Sanchez, Daniela & Castillo, Oscar, 2020. "Analysis of Spatial Spread Relationships of Coronavirus (COVID-19) Pandemic in the World using Self Organizing Maps," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Jocelyn Zhu & Beiyi Shen & Almas Abbasi & Mahsa Hoshmand-Kochi & Haifang Li & Tim Q Duong, 2020. "Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-11, July.
- Farooq, Junaid & Bazaz, Mohammad Abid, 2020. "A novel adaptive deep learning model of Covid-19 with focus on mortality reduction strategies," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Noha S. Alghamdi & Saeed M. Alghamdi, 2022. "The Role of Digital Technology in Curbing COVID-19," IJERPH, MDPI, vol. 19(14), pages 1-12, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
- Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
- Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Yongchao Jin & Renfang Wang & Xiaodie Zhuang & Kenan Wang & Honglian Wang & Chenxi Wang & Xiyin Wang, 2022. "Prediction of COVID-19 Data Using an ARIMA-LSTM Hybrid Forecast Model," Mathematics, MDPI, vol. 10(21), pages 1-13, October.
- Das, Ayan Kumar & Kalam, Sidra & Kumar, Chiranjeev & Sinha, Ditipriya, 2021. "TLCoV- An automated Covid-19 screening model using Transfer Learning from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Farrukh Saleem & Abdullah Saad AL-Malaise AL-Ghamdi & Madini O. Alassafi & Saad Abdulla AlGhamdi, 2022. "Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review," IJERPH, MDPI, vol. 19(9), pages 1-18, April.
- Castillo, Oscar & Melin, Patricia, 2021. "A new fuzzy fractal control approach of non-linear dynamic systems: The case of controlling the COVID-19 pandemics," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Frederik Seeup Hass & Jamal Jokar Arsanjani, 2021. "The Geography of the Covid-19 Pandemic: A Data-Driven Approach to Exploring Geographical Driving Forces," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
- Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
- Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Abu Reza Md. Towfiqul Islam & Md. Hasanuzzaman & Md. Abul Kalam Azad & Roquia Salam & Farzana Zannat Toshi & Md. Sanjid Islam Khan & G. M. Monirul Alam & Sobhy M. Ibrahim, 2021. "Effect of meteorological factors on COVID-19 cases in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9139-9162, June.
- Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
- Xiaojin Xie & Kangyang Luo & Zhixiang Yin & Guoqiang Wang, 2021. "Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
- Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
More about this item
Keywords
Artificial intelligence; Computer-aided diagnosis; Deep learning; Machine learning; Infectious diseases; COVID-19; SARS-CoV-2;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920307323. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.