IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-022-04838-6.html
   My bibliography  Save this article

Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales

Author

Listed:
  • Md. Iftekharul Alam Efat

    (Noakhali Science and Technology University)

  • Petr Hajek

    (University of Pardubice)

  • Mohammad Zoynul Abedin

    (Teesside University)

  • Rahat Uddin Azad

    (Noakhali Science and Technology University)

  • Md. Al Jaber

    (Noakhali Science and Technology University)

  • Shuvra Aditya

    (Noakhali Science and Technology University)

  • Mohammad Kabir Hassan

    (University of New Orleans)

Abstract

Existing sales forecasting models are not comprehensive and flexible enough to consider dynamic changes and nonlinearities in sales time-series at the store and product levels. To capture different big data characteristics in sales forecasting data, such as seasonal and trend variations, this study develops a hybrid model combining adaptive trend estimated series (ATES) with a deep neural network model. ATES is first used to model seasonal effects and incorporate holiday, weekend, and marketing effects on sales. The deep neural network model is then proposed to model residuals by capturing complex high-level spatiotemporal features from the data. The proposed hybrid model is equipped with a feature-extraction component that automatically detects the patterns and trends in time-series, which makes the forecasting model robust against noise and time-series length. To validate the proposed hybrid model, a large volume of sales data is processed with a three-dimensional data model to effectively support business decisions at the product-specific store level. To demonstrate the effectiveness of the proposed model, a comparative analysis is performed with several state-of-the-art sales forecasting methods. Here, we show that the proposed hybrid model outperforms existing models for forecasting horizons ranging from one to 12 months.

Suggested Citation

  • Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04838-6
    DOI: 10.1007/s10479-022-04838-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04838-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04838-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04838-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.